题目背景
此题为纪念 LiYuxiang 而生。
题目描述
LiYuxiang 是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同种类的草药,采每一种都需要一些时间,每一种也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是 LiYuxiang,你能完成这个任务吗?
此题和原题的不同点:
11. 每种草药可以无限制地疯狂采摘。
22. 药的种类眼花缭乱,采药时间好长好长啊!师傅等得菊花都谢了!
输入格式
输入第一行有两个整数,分别代表总共能够用来采药的时间 �t 和代表山洞里的草药的数目 �m。
第 22 到第 (�+1)(m+1) 行,每行两个整数,第 (�+1)(i+1) 行的整数 ��,��ai,bi 分别表示采摘第 �i 种草药的时间和该草药的价值。
输出格式
输出一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
输入输出样例
输入 #1复制
70 3 71 100 69 1 1 2
输出 #1复制
140
说明/提示
数据规模与约定
- 对于 30%30% 的数据,保证 �≤103m≤103 。
- 对于 100%100% 的数据,保证 1≤�≤1041≤m≤104,1≤�≤1071≤t≤107,且 1≤�×�≤1071≤m×t≤107,1≤��,��≤1041≤ai,bi≤104。
这个题的话就是一道一道考察完全背包的问题,先看这个题它的每种草药可以无限的采摘,然后又给了时间和草药数量,那就直接套用完全背包问题的模板直接写出它的状态转移方程
d[j]=max(d[j],d[j-w[i]]+c[i])
#include<bits/stdc++.h>
using namespace std;
long long w[10005],c[10005],dp[10000005],t,m;
int main()
{
scanf("%lld%lld",&t,&m);
for(int i=1;i<=m;i++){
scanf("%lld%lld",&w[i],&c[i]);
}
for(int i=1;i<=m;i++){
for(int j=w[i];j<=t;j++){
dp[j]=max(dp[j],dp[j-w[i]]+c[i]);
}
}
printf("%lld",dp[t]);
return 0;
}
题目描述
观察下面的数字金字塔。
写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以走到左下方的点也可以到达右下方的点。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
在上面的样例中,从 7→3→8→7→57→3→8→7→5 的路径产生了最大
输入格式
第一个行一个正整数 �r ,表示行的数目。
后面每行为这个数字金字塔特定行包含的整数。
输出格式
单独的一行,包含那个可能得到的最大的和。
输入输出样例
输入 #1复制
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
输出 #1复制
30
说明/提示
【数据范围】
对于 100%100% 的数据,1≤�≤10001≤r≤1000,所有输入在 [0,100][0,100] 范围内。
题目翻译来自NOCOW。
USACO Training Section 1.5
IOI1994 Day1T1
题目的大概意思就是现在有一个数字金子塔,然后我们要从最高点开始向下,然后找出一条路径,使其经过的数字的和最大,路径只能向坐下或者右下出发那么我们就有两种方法第一种就是另辟思路从下面向上面开始加和
#include<bits/stdc++.h>
using namespace std;
int a[1000][1000],n;
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++){
for(int j=0;j<=i;j++){
scanf("%d",&a[i][j]);
}
}
for(int i=n-2;i>=0;i--){
for(int j=0;j<=i;j++){
a[i][j]+=max(a[i+1][j],a[i+1][j+1]);
}
}
printf("%d",a[0][0]);
return 0;
}
第二种方法就是从上面开始向下加和,但是可以用一维数组进行优化使其方便许多
#include<bits/stdc++.h>
using namespace std;
int a[1005],n,p,ans;
int main()
{
scanf("%d",&n);
for(int i=n;i;i--){
for(int j=i;j<=n;j++){
scanf("%d",&p);
a[j]=max(a[j],a[j+1])+p;
}
}
for(int i=1;i<=n;i++){
ans=max(ans,a[i]);
}
printf("%d",ans);
return 0;
}
题目背景
现在乐斗有活动了!每打一个人可以获得 5 倍经验!absi2011 却无奈的看着那一些比他等级高的好友,想着能否把他们干掉。干掉能拿不少经验的。
题目描述
现在 absi2011 拿出了 �x 个迷你装药物(嗑药打人可耻…),准备开始与那些人打了。
由于迷你装药物每个只能用一次,所以 absi2011 要谨慎的使用这些药。悲剧的是,用药量没达到最少打败该人所需的属性药药量,则打这个人必输。例如他用 22 个药去打别人,别人却表明 33 个药才能打过,那么相当于你输了并且这两个属性药浪费了。
现在有 �n 个好友,给定失败时可获得的经验、胜利时可获得的经验,打败他至少需要的药量。
要求求出最大经验 �s,输出 5�5s。
输入格式
第一行两个数,�n 和 �x。
后面 �n 行每行三个数,分别表示失败时获得的经验 �����losei,胜利时获得的经验 ����wini 和打过要至少使用的药数量 ����usei。
输出格式
一个整数,最多获得的经验的五倍。
输入输出样例
输入 #1复制
6 8 21 52 1 21 70 5 21 48 2 14 38 3 14 36 1 14 36 2
输出 #1复制
1060
说明/提示
【Hint】
五倍经验活动的时候,absi2011 总是吃体力药水而不是这种属性药。
【数据范围】
- 对于 10%10% 的数据,保证 �=0x=0。
- 对于 30%30% 的数据,保证 0≤�≤100≤n≤10,0≤�≤200≤x≤20。
- 对于 60%60% 的数据,保证 0≤�,�≤1000≤n,x≤100, 10<�����,����≤10010<losei,wini≤100,0≤����≤50≤usei≤5。
- 对于 100%100% 的数据,保证 0≤�,�≤1030≤n,x≤103,0<�����≤����≤1060<losei≤wini≤106,0≤����≤1030≤usei≤103。
【题目来源】
fight.pet.qq.com
absi2011 授权题目
题目的大致意思就是我们需要用一定数量的药剂但是需要获得尽可能多的经验,因为这个题目给的条件是失败的时候也会有经验所得,意思就是像背包问题中不拿一样,但是有所不同的是不拿也可以获得一定的经验所以说我们就需要在不选的情况下加上相应失败的价值
#include<bits/stdc++.h>
using namespace std;
long long n,x,l[1005],w[1005],u[1005],dp[1005];
int main()
{
scanf("%lld%lld",&n,&x);
for(int i=1;i<=n;i++){
scanf("%lld%lld%lld",&l[i],&w[i],&u[i]);
}
for(int i=1;i<=n;i++){
for(int j=x;j>=u[i];j--){
dp[j]=max(dp[j]+l[i],dp[j-u[i]]+w[i]);
}
for(int j=u[i]-1;j>=0;j--){
dp[j]=dp[j]+l[i];
}
}
printf("%lld",5*dp[x]);
return 0;
}