复数的幂
limofu公式:在x = r(cos(θ) + i * sin(θ))中,x ** n = r ** n * (cos(n * θ) + i * sin(n * θ))
令r = 1时,x ** n = cos(n * θ) + i * sin(n * θ)
复数的根
设 x = r * (cos(θ) + i * sin(θ)), w ** n = x, w = sqrt(x)
w = q * (cos(p) + i * sin(p))
w ** n = q ** n * (cos(n * p) + i * sin(n * p))
q ** n = r, θ + 2kpi = n * p
所以 p = (θ + 2kpi) / n
所以 sqrt(x) = r ** (1 / n) * (cos((θ + 2kpi) / n) + i * sin((θ + 2kpi) / n))
共轭复数
若有 x = a + b * i, 则有 !x = a - b * i
!x就是x的共轭复数
a = (x + !x) / 2, b = - (i / 2) * (x - !x)