子数组 之 logTrick算法,求解或,与,LCM,GCD

  • 求解子数组的&,|,lcm,gcd最值or计数问题,如果采用暴力的做法,那么时间复杂度会来到o(n^2),其实在求解的过程中,会出现很多的结果不变的情况,所以我们就可以提前结束

  • 存在一定的单调性,一般都是 枚举右端点,r然后让区间一直加入右端点,如果更新的值与原本的区间的值相同,就可以停止更新

gcd的问题

最大公约数

在这里插入图片描述
在这里插入图片描述

  • 首先,这个数据范围比较大,是需要使用nlogn的算法进行求解的
  • 接着,查看问题的思路,可以发现,如果原始的数组中存在1,那么就只需使用n-1的数量即可,否则的话,就得想办法,是否可以最少代价gcd出一个1,那么这里就是可以转化为一个gcd子数组为1的最短长度的问题,由于得使用nlogn算法,所以就是考虑要么使用线段树或者LogTrick算法,那么这里就使用简单的Logtrick算法进行求解
import os
import sys
import math
from collections import Counter

# 请在此输入您的代码

# 先判断是否包含这个 1,如果包含1的话,那么结果就是总的数组长度减去1的数量
# 否则就是找到区间gcd为1的最短的
n = int(input())
a = list(map(int,input().split()))

b = a[::]
minlen = n+1
for i in range(n):
  if b[i] == 1:
    minlen = 1
    break
  for j in range(i-1,-1,-1):
    if math.gcd(b[j],b[i]) == b[j]:
      break
    b[j] = math.gcd(b[j],b[i])
    if b[j] == 1:
      minlen = min(minlen,i-j+1)

if minlen == 1:
  cou = Counter(a)
  print(n-cou[1])
elif minlen != n+1:
  # minlen-1次的操作会带来一个1,n-1
  print(minlen-1+n-1)
else:
  print(-1)
  • 如果使用线段树的话,就得使用线段树+二分


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值