题目
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
示例
示例 1:
输入:n = 3
输出:[“((()))”,“(()())”,“(())()”,“()(())”,“()()()”]
示例 2:
输入:n = 1
输出:[“()”]
提示
- 1 <= n <= 8
题解
还记得我们做过的力扣第17题:电话号码的组合吗?我们需要写出所有数字可能组成的字母组合。本题也是一样,需要我们求出所有可能组成合法括号的组合。
所以,本题我们还是采用回溯的思想写出所有合法括号的组合。我们要知道组成合法括号的几个条件,我们定义两个变量left,right分别代表左括号和右括号的数量,使用StringBuffer添加字符。
- left小于n的时候可以添加左括号。
if(left < n) {
sb.append('(');
backtrack(left + 1, right, list, sb, n);
sb.deleteCharAt(sb.length() - 1);
}
- rigth小于left的时候可以添加右括号
if(right < left) {
sb.append(')');
backtrack(left, right + 1, list, sb, n);
sb.deleteCharAt(sb.length() - 1);
}
- 字符串的长度等于n * 2 时,添加到集合当中。
if(sb.length() == n * 2) {
list.add(sb.toString());
return;
}
我们可以根据这三个条件进行回溯,遍历完所有可能出现的情况,最后返回集合。
代码
class Solution {
public List<String> generateParenthesis(int n) {
List<String> list = new ArrayList<>();
backtrack(0, 0, list, new StringBuffer(), n);
return list;
}
public void backtrack(int left, int right, List<String> list, StringBuffer sb, int n) {
if(sb.length() == n * 2) {
list.add(sb.toString());
return;
}
if(left < n) {
sb.append('(');
backtrack(left + 1, right, list, sb, n);
sb.deleteCharAt(sb.length() - 1);
}
if(right < left) {
sb.append(')');
backtrack(left, right + 1, list, sb, n);
sb.deleteCharAt(sb.length() - 1);
}
}
}