代码随想录算法训练营第一天 | 704.二分查找、27.移除元素

本文介绍了LeetCode中的两个问题,分别是704号问题的二分查找解法,包括左闭右闭和左闭右开两种情况,以及27号问题的移除元素的暴力解法和双指针法。强调了二分查找的区间定义和双指针法在处理数组操作时的效率差异,并提醒了注意事项,如数组的有序性和边界处理。
摘要由CSDN通过智能技术生成

目录

LeeCode 704 二分查找

解法一:左闭右闭

解法二:左闭右开

注意

LeeCode 27 移除元素

解法一:暴力解法 

解法二:双指针法

注意 

总结


LeeCode 704 二分查找

题目链接:力扣题目链接​​​​​

解法一:

target所在区间为左闭右闭时,即 [left,right]

此时区间的左右端点可以相等,while语句的判断条件为:left <= right

若需要更新 right/left,需将其赋值为 middle-1/middle+1 ,而非直接赋值为 middle ,因为middle值已被检查过非目标值。

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
	    int right = nums.size() - 1; 
	    while(left <= right){
	    	int middle = left + ((right - left)/2);
	    	if(nums[middle] > target){
	    		right = middle - 1;
			}
			else if(nums[middle] < target){
				left = middle + 1;
			}
			else return middle;
		}
		return -1;
    }
};

时间复杂度:O(log n)     空间复杂度:O(1) 

解法二:

target所在区间为左闭右开时,即 [left,right)

此时区间左端点一定小于右端点,while语句的判断条件为:left < right​​​​​​​。

若需要更新 right,直接赋值为 middle。

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
	    int right = nums.size(); 
	    while(left < right){
	    	int middle = left + ((right - left)>>1);
	    	if(nums[middle] > target){
	    		right = middle ;
			}
			else if(nums[middle] < target){
				left = middle + 1;
			}
			else return middle;
		}
		return -1;
    }
};

时间复杂度:O(log n)     空间复杂度:O(1)

注意:

1.使用二分法的前提:数组有序,数组元素不重复。

2.确定好区间的开闭性后,贯彻到底,每次处理边界时都按照最初的定义执行。

 (区间开闭影响:指针初始化 / 循环结束的条件 / 指针的更新)

3.取 middle 值时,为避免溢出,需将 (left + right)/ 2  替换为  left +((right - left)/ 2)  或

   left + ((right - left)>> 1) ,后者 “ >> ” 操作意为“右移”——x>>y==x / (2^y)。


LeeCode 27 移除元素

题目链接:力扣题目链接​​​​​​​

解法一:暴力解法 

通过双重for循环,外层循环对数组进行遍历,内层循环用于更新数组。

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int size = nums.size();
		for(int i = 0;i < size;i++){
			if(nums[i] == val){
				for(int j = i;j < size-1;j++){
					nums[j] = nums[j+1];
				}
			i--;
    		size--;
			}
		} 
    return size;
    }
};

 时间复杂度:O(n²)     空间复杂度:O(1)

解法二:双指针法

定义快慢指针,快指针查找符合要求的新数组的元素,慢指针用于标记新数组中的元素,慢指针最后指向的下标就是新数组的大小。

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int slowindex = 0;
        for(int fastindex = 0; fastindex < nums.size(); fastindex++){
    	    if(val != nums[fastindex]){
    		    nums[slowindex++] = nums[fastindex];
		}
	}
	return slowindex;
    }
};

时间复杂度:O(n)     空间复杂度:O(1) 

注意 :

1.数组中元素的存储是连续的,所以无法对数组中间的某个元素直接进行删除操作,故需要通过覆

   盖/赋值来达到删除的效果。

2. fastindex < nums.size();  而非 fastindex <= nums.size()-1;,原因:vector中的size()函数的

    返回值是无符号整数,空数组时返回0,-1会导致数组出界。


总结

之前只是简单了解二分法和双指针法的思想,实际写题才发现有很多需要注意的点,果然,懂和会的差别很大。

移除元素相向双指针法,需要考虑的情况比较复杂,暂时还没理解ε=(´ο`*)),回头再填坑吧。

第一次写博客,感觉比写实验报告轻松,不过内容和排版上还需要改进学习。

(慎点撤销,手贱点了,所以最初写好的两种解法全没了o(╥﹏╥)o)

第二十二天的算法训练营主要涵盖了Leetcode题目中的三道题目,分别是Leetcode 28 "Find the Index of the First Occurrence in a String",Leetcode 977 "有序数组的平方",和Leetcode 209 "长度最小的子数组"。 首先是Leetcode 28题,题目要求在给定的字符串中找到第一个出现的字符的索引。思路是使用双指针来遍历字符串,一个指向字符串的开头,另一个指向字符串的结尾。通过比较两个指针所指向的字符是否相等来判断是否找到了第一个出现的字符。具体实现的代码如下: ```python def findIndex(self, s: str) -> int: left = 0 right = len(s) - 1 while left <= right: if s[left == s[right]: return left left += 1 right -= 1 return -1 ``` 接下来是Leetcode 977题,题目要求对给定的有序数组中的元素进行平方,并按照非递减的顺序返回结果。这里由于数组已经是有序的,所以可以使用双指针的方法来解决问题。一个指针指向数组的开头,另一个指针指向数组的末尾。通过比较两个指针所指向的元素的绝对值的大小来确定哪个元素的平方应该放在结果数组的末尾。具体实现的代码如下: ```python def sortedSquares(self, nums: List[int]) -> List[int]: left = 0 right = len(nums) - 1 ans = [] while left <= right: if abs(nums[left]) >= abs(nums[right]): ans.append(nums[left ** 2) left += 1 else: ans.append(nums[right ** 2) right -= 1 return ans[::-1] ``` 最后是Leetcode 209题,题目要求在给定的数组中找到长度最小的子数组,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值