目录
LeeCode 977 有序数组的平方
题目链接:977. 有序数组的平方 - 力扣(LeetCode)
解法一:暴力排序
直接对数组元素平方,将得到的新数组sort排序。
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
for(int i = 0;i < nums.size();i++){
nums[i] = nums[i] * nums[i];
}
sort(nums.begin(),nums.end());
return nums;
}
};
时间复杂度:O(n + nlogn)
解法二:双指针法
定义一个和原数组大小相等的新数组用于存储排序后的元素。定义两个指针,分别指向数组的首尾,比较指针所指两个元素平方后的大小,较大元素的平方赋值给新数组的最后一个元素,对应指针向数组中间移动,依次进行比较赋值,直至两个指针相遇。
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
int k = nums.size() - 1;
vector<int> result(nums.size(),0);
int i = 0,j = nums.size()-1;
while(i <= j){
if(nums[i] * nums[i] < nums[j] * nums[j]){
result[k--] = nums[j] * nums[j];
j--;
}
else{
result[k--] = nums[i] * nums[i];
i++;
}
}
return result;
}
};
时间复杂度:O(n)
注意:
1.双指针法中,while循环的条件为i<=j,在两指针重合时结束循环,确保数组所有元素都被平方。
2.双指针法思路的关键:平方后的数组,最大值一定在数组两端,比较后得到的数据是降序排列,故存储新数组的元素时顺序为从尾到首。
LeeCode 209 长度最小的子数组
题目链接:209. 长度最小的子数组 - 力扣(LeetCode)
解法一:暴力解法
使用双重循环遍历数组,找到所有满足条件的子数组,返回这些子数组的最小长度。
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int result = INT32_MAX;
int sum = 0;
int slength = 0;
for(int i = 0;i < nums.size();i++){
sum = 0;
for(int j = 0;j < nums.size();j++){
sum += nums[j];
if(sum >= target){
slength = j + i - 1;
result = result < slength ? result : slength;
break;
}
}
}
return result == INT32_MAX ? 0 : result;
}
};
时间复杂度:O(n²) 空间复杂度:O(1)
解法二:滑动窗口
从初始位置开始向后移动右指针,将指针每次所指的数组元素值累加,当累加值大于等于目标值时,开始右移左指针,找到满足 两指针中间元素和大于等于目标值 的条件的最小的滑动窗口长度。
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int result = INT32_MAX;
int sum = 0;
int i = 0;
int slength = 0;
for(int j = 0;j < nums.size();j++){
sum += nums[j];
while(sum >= target){
slength = j - i + 1;
result = result < slength ? result : slength;
sum -= nums[i++];
}
}
return result == INT32_MAX ? 0 : result;
}
};
时间复杂度:O(n) 空间复杂度:O(1)
注意:
1.暴力算法因时间复杂度太大会超时,可以设置若目前查出来的最小长度比剩下还要遍历的长度还长时,提前退出。
2.如果j是起始位置,那么终止位置移动,需要遍历,是暴力算法,所以滑动窗口就是移动起始位置。
3.滑动窗口法中while循环内每个元素进出滑动窗口各一次,时间复杂度为O(2n),即O(n)。
LeeCode 59 螺旋矩阵II
题目链接:59. 螺旋矩阵 II - 力扣(LeetCode)
解法
思路:将矩阵分解为上下左右四条边,依据上行-右列-下行-左列的顺序依次填充,每条边都坚持左闭右开的原则。圈循环的次数取决于n/2的值,若n为奇数,需另外将矩阵中心的元素进行赋值。从[0,0]开始,每遍历完一圈,起始位置各自加一。
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n,vector<int>(n,0));
int startx = 0,starty = 0;
int loop = n / 2;
int mid = n / 2;
int count = 1;
int offset = 1;
int i,j;
while(loop --){
i = startx;
j = starty;
for(j = starty; j < n - offset; j++){
res[startx][j] = count++;
}
for(i = startx; i < n - offset; i++){
res[i][j] = count++;
}
for(; j > starty; j--){
res[i][j] = count++;
}
for(; i > startx; i--){
res[i][j] = count++;
}
startx++;
starty++;
offset += 1;
}
if(n % 2){
res[mid][mid] = count;
}
return res;
}
};
注意:
1.二分法坚持循环不变量原则,区间的开闭从始至终要一致。
2.while循环里四种情况分别代表四条边,for循环的条件需要考虑清楚区间的边界问题。
总结
1.对双指针法有了更深的理解,滑动窗口的原理大体理解,基本能自己写出来代码。
2.螺旋矩阵能顺下来代码,体会到了二分法的神奇。