一、项目背景
在数字化营销时代,企业通过多种渠道投放广告以提升品牌曝光率和销售额。然而,不同广告渠道的效果差异较大,如何优化广告预算分配以实现销售额最大化成为企业关注的核心问题。本项目旨在分析不同广告投放渠道与销售额之间的关系,帮助企业识别高效渠道,优化广告策略,提升投资回报率(ROI)。
二、数据来源与说明
本次项目的数据来源于Kaggle平台的广告投放对销售额影响数据集,此数据集包含200条广告投放数据,包含广告投放渠道(电视、广播、报纸)与销售额四个维度的字段。
本项目所使用的广告投放渠道数据可能并非当前市场主流的投放方式,因此分析结果的实际应用性可能存在一定局限。本项目的主要目的是分享数据分析的思路与流程,为类似场景提供参考和借鉴,数据本身仅作为示例,建议在实际业务中结合最新市场情况进行调整与验证。
三、项目思路
3.1 明确业务目标
分析不同广告投放渠道与销售额之间的关系,识别高效渠道和低效渠道,提出优化广告预算分配的建议。
3.2 数据查看与处理
通过SPSS中的 描述性分析 和 缺失值分析 来查看数据的数值分布情况、是否存在缺失值或异常值。
3.3 查看数据基本关系
首先通过 散点图 来简单查看自变量(广告投放渠道)和因变量(销售额)是否存在线性关系。然后再通过 相关性分析 来进一步分析各个变量间的关系。
3.4 回归性分析
经过相关性分析后,确定了自变量与因变量之间是否存在相关关系,接着需要通过回归分析来查看广告投放渠道对销售额的影响关系,即某个渠道对销售额的影响到底有多大。
3.5 提出优化策略
经过回归分析之后,可以找出对销售额影响较大的广告投放渠道,据此优化各个渠道的投放比例,提升投资回报率。
四、项目流程
分析工具:SPSS
4.1 数据导入与描述性分析
(1)打开SPSS,新建数据,导入数据后将数据字段名修改为中文字段。
(2)对数据进行描述性分析,查看数据分布情况。
(3)对数据进行缺失值分析,查看数据的缺失情况和异常情况。
由上面的表格可以看出,数据不存在缺失值,但是 报纸 存在两个异常高的数值。对于这两个异常值,我选择保留,原因如下:
①如果这两个异常值是真实发生的业务数据,那么它们反映了实际的业务情况。删除或替换这些数据可能会扭曲分析结果,导致对广告渠道效果的错误评估。
②这两个异常值可能是由于某次大规模的促销活动或广告投放策略的调整导致的。例如,报纸广告可能在某些特定时期(如节假日、产品发布日)进行了大规模的投放。
因此,保留异常值可以确保数据的完整性,避免因处理异常值而引入偏差,从而更准确地评估报纸广告的效果。
4.2 查看数据基本关系
(1)散点图
①电视广告投放于销售额的关系
由上面的散点图可以看出,销售额随电视广告的投入的提高而提高,且销售额波动幅度较小,电视广告的投入与销售额大致呈现正相关的线性关系。 由拟合线的R²线性值=0.612也可以看出电视广告投入与销售额之间存在较强的线性关系。
②广播广告与销售额的关系
由上图可以看出,销售额随广播广告的投入的提高而提高,但在广告投入相同(差异较小)的情况下,销售额波动幅度较大,说明广播广告的投入与销售额的线性关系较弱。由拟合线的R²线性值=0.332也可以看出广播广告投入与销售额之间的线性关系较弱。
③报纸广告与销售额的关系
由上图可以看出,报纸的广告投入主要分布在0-60之间,且在广告投入相同(差异较小)的情况下,销售额波动幅度很大,表明广告投入对销售额的影响不稳定。由拟合线的R²线性值=0.052也可以看出报纸广告投入与销售额之间的线性关系非常弱,几乎不存在线性关系。
(2)相关性分析
通过上面的相关性分析图可以看到,销售额与电视广告、广播广告、报纸广告之间的投放都有显著的相关性。说明电视广告、广播广告、报纸广告对销售额都产生影响,但具体要分析每个渠道对销售额产生影响的大小,需要通过回归分析进一步计算。
【异常现象分析】
在进行到这一步的时候,我发现了一个奇怪的地方:报纸广告与销售额不存在很强的线性关系,但是却存在显著的相关性,是什么原因?经过分析之后,我认为产生的原因可能有两点:
一 、报纸广告与销售额之间存在的是非线性的关系;
二 、报纸广告数据中存在子群体(报纸广告与销售额散点图中0-20部分点比较密集),群体内相关性高,但整体散点图混杂后无趋势。
如果你有不同的意见,欢迎提出大家一起讨论!!!
4.3 回归分析
将电视广告、广播广告、报纸广告作为自变量、销售额作为因变量进行回归分析,得到的模型公式为:销售额 = 2.939 + 0.046*电视广告投入 + 0.189*广播广告投入 - 0.001*报纸广告投入
通过分析以上回归结果可知:
①电视广告的回归系数值为0.046(t=32.809,p=0.000<0.01),认为电视广告投放对销售额产生显著性的正向影响关系。
②广播广告的回归系数值为0.189(t=21.893,p=0.000<0.01),认为广播广告投放对销售额产生显著性的正向影响关系。
③报纸广告的回归系数值为-0.001(t=-0.177,p=0.86>0.05),不能认为报纸广告投放对销售额产生负向的影响关系。
由此看来,电视广告的投入 和 广播广告的投入 会对销售额产生正向的影响关系,且广播广告的投入影响比电视广告的投入影响大。
4.4 分析建议
(1)战略资源再分配
-
优先扩大广播广告预算,其边际效益(0.189)是电视广告(0.046)的4.1倍,建议将报纸广告预算全面转向广播渠道
-
电视广告保持基础投放量,用于品牌曝光维护,但不宜过度追加投入
-
建立动态监测机制,每季度评估广播广告的边际效益递减临界点
(2)媒介组合优化
-
开发电视+广播的跨媒介广告套餐(如音频版电视广告)
-
在黄金时段采取"电视品牌广告+广播促销广告"的协同投放策略
-
测试广播广告的时段密度效应(早高峰/晚高峰的投入产出比差异)
(3)数字化升级方向
-
将广播广告预算的20%转为播客/Podcast定向广告,捕捉年轻客群
-
开发智能广播广告系统,实现实时竞价(RTB)投放
-
在电视广告中嵌入广播呼号(如口播"搜索XXX收听完整故事")
(4)风险控制措施
-
保持电视广告最低必要曝光量(防止品牌搜索量下降)
-
建立广播广告效果衰减预警指标(如每千次播放收益下降5%即触发策略调整)
-
保留报纸广告应急预算(应对突发舆情时的声明发布需求)
五、结语
这篇文章记录并分析了我使用SPSS分析多种影响因素对某一变量的影响程度的项目思路和流程,呈现了从项目背景、数据来源、项目思路到项目流程的研究路径,希望对你来说有参考意义!如果文章中有错漏之处,也欢迎大家指出!!