表盘与瓶盖(用于标定)检测系统源码分享

表盘与瓶盖(用于标定)检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着工业自动化和智能制造的快速发展,物体检测技术在生产线上的应用日益广泛,尤其是在产品质量检测和标定过程中。表盘和瓶盖作为许多产品的重要组成部分,其准确的检测与识别对于确保产品的质量和安全性至关重要。传统的检测方法往往依赖于人工操作,不仅效率低下,而且容易受到人为因素的影响,导致检测结果的不一致性。因此,基于深度学习的自动化检测系统逐渐成为研究的热点。

YOLO(You Only Look Once)系列模型因其高效的实时检测能力而受到广泛关注。YOLOv8作为该系列的最新版本,结合了更为先进的特征提取网络和优化算法,能够在保持高精度的同时,实现更快的检测速度。通过对YOLOv8模型的改进,可以更好地适应表盘与瓶盖的检测需求,从而提高检测的准确性和效率。

本研究的核心在于构建一个基于改进YOLOv8的表盘与瓶盖检测系统。该系统将使用一个包含1600张图像的数据集,涵盖了两个主要类别:瓶子和表盘。这一数据集的构建为模型的训练和验证提供了丰富的样本,确保了模型在不同场景下的泛化能力。通过对数据集的深入分析和处理,可以有效提高模型对不同形状、颜色和尺寸的瓶盖及表盘的识别能力,进而提升整体检测系统的性能。

在实际应用中,表盘与瓶盖的检测不仅涉及到物体的定位与分类,还包括对其尺寸、形状及缺陷的判断。因此,改进YOLOv8模型的研究不仅限于提高检测的准确率,还需要考虑到模型的鲁棒性和实时性。这对于生产线的自动化检测系统而言,具有重要的实际意义。通过引入改进的YOLOv8模型,可以实现对表盘与瓶盖的快速、准确检测,从而降低人工成本,提高生产效率,确保产品质量。

此外,随着深度学习技术的不断发展,物体检测领域的研究也在不断深化。通过对YOLOv8模型的改进,能够为后续的研究提供新的思路和方法,推动物体检测技术在更广泛领域的应用。这不仅有助于提升工业生产的智能化水平,也为相关领域的研究人员提供了宝贵的参考。

综上所述,基于改进YOLOv8的表盘与瓶盖检测系统的研究,不仅具有重要的理论价值,也具备显著的实际应用意义。通过本研究,期望能够为工业自动化检测技术的发展贡献一份力量,推动相关技术的进步与应用,为实现更高效、更智能的生产环境奠定基础。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 2
names: [‘bottle’, ‘dial’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们采用了名为“Ar Inspection”的数据集,以支持对改进YOLOv8模型在表盘与瓶盖检测系统中的训练与评估。该数据集专门设计用于检测和识别两种主要类别:瓶盖(bottle)和表盘(dial)。这两类物体在工业和日常生活中具有广泛的应用,尤其是在自动化检测和质量控制领域。通过对这两类物体的有效识别与定位,我们能够提升产品的检测效率,确保生产过程中的质量标准。

“Ar Inspection”数据集的构建考虑到了多样性和代表性,旨在涵盖不同形状、颜色和尺寸的瓶盖与表盘,以便于模型在各种实际场景中表现出色。数据集中包含的图像样本经过精心挑选,确保每个类别的样本都能反映出其在真实环境中的多样性。例如,瓶盖的样本可能包括不同品牌、材质和颜色的瓶盖,而表盘的样本则可能涉及不同类型的仪表盘,如时钟、仪表和控制面板等。这种多样性不仅增强了模型的泛化能力,还提高了其在复杂环境下的识别准确率。

数据集的标注过程同样至关重要。所有图像均经过专业人员的手动标注,确保每个目标物体的边界框和类别标签的准确性。这种高质量的标注为YOLOv8模型的训练提供了坚实的基础,使其能够在训练过程中有效学习到特征和模式。标注的准确性直接影响到模型的性能,因此在数据集的构建过程中,我们特别注重标注的规范性和一致性。

在数据集的使用过程中,我们将其分为训练集和验证集,以便于模型的训练和性能评估。训练集用于模型的学习,而验证集则用于监测模型在未见数据上的表现。这种划分方式能够有效防止模型的过拟合现象,从而提升其在实际应用中的可靠性和稳定性。

此外,为了增强模型的鲁棒性,我们还对数据集进行了数据增强处理,包括旋转、缩放、裁剪和颜色变换等。这些技术手段使得模型能够在面对不同光照条件、视角变化和背景干扰时,依然保持较高的检测精度。通过这些措施,我们希望提升YOLOv8在实际应用中的表现,使其能够更好地适应复杂的检测任务。

综上所述,“Ar Inspection”数据集为改进YOLOv8的表盘与瓶盖检测系统提供了丰富的训练素材和可靠的标注信息。通过对该数据集的深入分析与应用,我们期待能够实现更高效、更准确的物体检测,为相关领域的自动化和智能化发展贡献力量。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8是由Ultralytics于2023年1月发布的一款先进目标检测模型,它不仅是YOLO系列的最新成员,更是融合了多个前沿算法的精华,如YOLOX、YOLOv6、YOLOv7和PPYOLOE等,形成了一种高效、精准的检测解决方案。YOLOv8的设计理念在于追求实时检测的极致性能,特别是在精度和速度方面的平衡,使其在目标检测领域引发了新的技术革命。

YOLOv8的架构基于YOLOv5的基础之上,进行了深度的改进和优化。其主干网络采用了CSP(Cross Stage Partial)结构,进一步增强了特征提取的能力。CSP结构的引入,使得特征图的处理更加高效,通过将特征提取过程分为两部分,分别进行卷积和连接,极大地提升了模型的计算效率。为了进一步加速模型的计算,YOLOv8在末尾采用了SPPF(Spatial Pyramid Pooling Fast)模块,该模块通过多尺度特征融合,有效地提升了模型的推理速度。

在特征融合方面,YOLOv8采用了PAN-FPN(Path Aggregation Network - Feature Pyramid Network)结构,这种结构能够在不同尺度上进行特征的多层次融合,确保了模型在处理不同大小目标时的准确性和鲁棒性。与传统的特征融合方法相比,PAN-FPN在信息传递的过程中减少了信息的损失,使得模型能够更好地捕捉到目标的细节特征。

YOLOv8的检测方式采用了Anchor-Free的策略,这一创新显著简化了目标检测的过程。传统的Anchor-Based方法需要预定义多个锚框,而YOLOv8通过解耦头结构,将目标的分类和回归任务分开处理,消除了对锚框的依赖。这种设计不仅提升了模型的灵活性,还减少了计算复杂度,使得YOLOv8在各种硬件平台上都能高效运行。

在损失函数的设计上,YOLOv8引入了CloU(Complete Intersection over Union)损失,这一损失函数在目标检测中表现出色,能够更好地衡量预测框与真实框之间的重叠程度。CloU损失的使用,进一步提升了模型在定位精度上的表现,使得YOLOv8在小目标检测和高分辨率图像处理方面具备了更强的能力。

YOLOv8的创新不仅体现在网络结构的改进上,还包括了模型的多样性。它提供了多个版本,如YOLOv8n、YOLOv8s和YOLOv8m等,针对不同的应用场景和硬件条件,用户可以根据需求选择合适的模型。这种灵活性使得YOLOv8能够广泛应用于各类实时检测任务中,从工业检测到智能监控,再到农业应用等领域,展现出强大的适应性。

值得一提的是,YOLOv8在处理小目标和复杂场景时,展现出了卓越的性能。这一特性使得YOLOv8在农业领域的应用前景广阔,例如在苹果采摘的场景中,YOLOv8能够精准地识别和定位苹果,为自动采摘机器人提供可靠的视觉支持。结合路径规划算法,如蚁群算法,自动采摘机器人能够在复杂的果园环境中高效地完成采摘任务,提升了农业生产的智能化水平。

综上所述,YOLOv8作为目标检测领域的最新成果,凭借其高效的网络结构、创新的检测方式和灵活的应用能力,标志着实时目标检测技术的新高度。它不仅继承了YOLO系列的优良传统,更在多个方面进行了突破性创新,为各类应用场景提供了强有力的技术支持。随着YOLOv8的广泛应用,目标检测技术将迎来新的发展机遇,推动各行业的智能化进程。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 code\ultralytics\nn\modules\head.py

以下是经过简化和注释的核心代码,主要保留了YOLOv8的检测头模块(Detect)及其子类的关键部分,并对每个方法进行了详细的中文注释。

import torch
import torch.nn as nn
from ultralytics.utils.tal import make_anchors, dist2bbox

class Detect(nn.Module):
    """YOLOv8 检测头,用于目标检测模型。"""

    def __init__(self, nc=80, ch=()):
        """初始化 YOLOv8 检测层,指定类别数和通道数。
        
        参数:
            nc (int): 类别数,默认为 80。
            ch (tuple): 输入通道数的元组。
        """
        super().__init__()
        self.nc = nc  # 类别数
        self.nl = len(ch)  # 检测层的数量
        self.reg_max = 16  # DFL 通道数
        self.no = nc + self.reg_max * 4  # 每个锚点的输出数量
        self.stride = torch.zeros(self.nl)  # 在构建过程中计算的步幅

        # 定义卷积层
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
        )
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()  # DFL层

    def forward(self, x):
        """前向传播,返回预测的边界框和类别概率。
        
        参数:
            x (list): 输入特征图列表。
        
        返回:
            y (Tensor): 预测的边界框和类别概率。
        """
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)  # 拼接特征图

        shape = x[0].shape  # BCHW
        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)  # 合并所有层的输出

        # 动态锚点和步幅计算
        self.anchors, self.strides = make_anchors(x, self.stride, 0.5)

        box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)  # 分离边界框和类别
        dbox = self.decode_bboxes(box)  # 解码边界框

        y = torch.cat((dbox, cls.sigmoid()), 1)  # 合并解码后的边界框和类别概率
        return y

    def decode_bboxes(self, bboxes):
        """解码边界框。
        
        参数:
            bboxes (Tensor): 原始边界框。
        
        返回:
            Tensor: 解码后的边界框。
        """
        return dist2bbox(self.dfl(bboxes), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides

class Segment(Detect):
    """YOLOv8 分割头,用于分割模型。"""

    def __init__(self, nc=80, nm=32, ch=()):
        """初始化分割头,指定类别数和掩码数量。
        
        参数:
            nc (int): 类别数,默认为 80。
            nm (int): 掩码数量,默认为 32。
            ch (tuple): 输入通道数的元组。
        """
        super().__init__(nc, ch)
        self.nm = nm  # 掩码数量
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, nm, 3), Conv(nm, nm, 3), nn.Conv2d(nm, self.nm, 1)) for x in ch)

    def forward(self, x):
        """前向传播,返回模型输出和掩码系数。
        
        参数:
            x (list): 输入特征图列表。
        
        返回:
            (Tensor, Tensor): 模型输出和掩码系数。
        """
        mc = torch.cat([self.cv4[i](x[i]).view(x[0].shape[0], self.nm, -1) for i in range(self.nl)], 2)  # 掩码系数
        x = super().forward(x)  # 调用父类的 forward 方法
        return (torch.cat([x[0], mc], 1), mc)  # 返回合并后的输出

class Classify(nn.Module):
    """YOLOv8 分类头,用于分类任务。"""

    def __init__(self, c1, c2):
        """初始化分类头,指定输入和输出通道。
        
        参数:
            c1 (int): 输入通道数。
            c2 (int): 输出通道数。
        """
        super().__init__()
        self.conv = Conv(c1, 1280, 3)  # 卷积层
        self.pool = nn.AdaptiveAvgPool2d(1)  # 自适应平均池化
        self.linear = nn.Linear(1280, c2)  # 全连接层

    def forward(self, x):
        """前向传播,返回分类结果。
        
        参数:
            x (Tensor): 输入数据。
        
        返回:
            Tensor: 分类结果。
        """
        x = self.linear(self.pool(self.conv(x)).flatten(1))  # 通过卷积、池化和线性层
        return x.softmax(1)  # 返回 softmax 概率

# 其他类(如 OBB 和 Pose)可以类似地进行简化和注释

代码分析

  1. Detect 类:这是 YOLOv8 的核心检测头,负责处理输入特征图并生成边界框和类别概率。它包含了卷积层的定义、前向传播逻辑和边界框解码方法。
  2. Segment 类:继承自 Detect,用于处理分割任务,增加了掩码系数的计算。
  3. Classify 类:用于分类任务,包含卷积、池化和全连接层的定义,最终输出类别概率。

通过这样的简化和注释,代码的核心逻辑和功能变得更加清晰,便于理解和维护。

该文件是Ultralytics YOLO(You Only Look Once)模型的头部模块,主要用于目标检测、分割、姿态估计和分类等任务。文件中定义了多个类,分别实现了不同的功能模块。

首先,Detect类是YOLOv8的检测头,负责处理输入特征并输出预测的边界框和类别概率。它的构造函数接收类别数量和通道数,并初始化多个卷积层以提取特征。forward方法用于执行前向传播,处理输入并生成最终的预测结果。在训练模式下,它返回原始特征;在推理模式下,它会解码边界框并返回最终的预测结果。

接下来,Segment类继承自Detect,用于分割任务。它在初始化时增加了掩码和原型的数量,并在前向传播中返回掩码系数和原型。

OBB类同样继承自Detect,专门用于处理带有旋转的边界框。它在前向传播中计算旋转角度,并在推理时将角度与边界框结合。

Pose类用于姿态估计,负责处理关键点的预测。它的前向传播方法将关键点的特征与检测结果结合,返回最终的预测。

Classify类是YOLOv8的分类头,接收输入并通过卷积层和线性层进行处理,输出类别概率。

最后,RTDETRDecoder类实现了实时可变形Transformer解码器,结合了Transformer架构和可变形卷积,负责从多个层的特征中生成边界框和类别标签。它的构造函数初始化了多个参数,包括隐藏层维度、查询数量和解码层数等。forward方法处理输入特征并返回边界框和分类分数。

整体来看,该文件的设计充分利用了深度学习中的模块化思想,通过不同的类和方法实现了YOLOv8模型的各个功能模块,便于扩展和维护。每个类都针对特定的任务进行了优化,使得模型在不同的应用场景中都能表现出色。

11.2 code\ultralytics\models\yolo\obb\train.py

以下是代码中最核心的部分,并附上详细的中文注释:

# 导入必要的模块
from ultralytics.models import yolo
from ultralytics.nn.tasks import OBBModel
from ultralytics.utils import DEFAULT_CFG, RANK

class OBBTrainer(yolo.detect.DetectionTrainer):
    """
    OBBTrainer类扩展了DetectionTrainer类,用于基于定向边界框(OBB)模型的训练。
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """初始化OBBTrainer对象,接受配置和其他参数。"""
        if overrides is None:
            overrides = {}
        # 设置任务类型为"obb"
        overrides["task"] = "obb"
        # 调用父类的初始化方法
        super().__init__(cfg, overrides, _callbacks)

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回根据指定配置和权重初始化的OBBModel模型。"""
        # 创建OBBModel实例,ch表示输入通道数,nc表示类别数
        model = OBBModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1)
        # 如果提供了权重,则加载权重
        if weights:
            model.load(weights)

        return model

    def get_validator(self):
        """返回用于YOLO模型验证的OBBValidator实例。"""
        # 定义损失名称
        self.loss_names = "box_loss", "cls_loss", "dfl_loss"
        # 返回OBBValidator实例
        return yolo.obb.OBBValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))

代码注释说明:

  1. 导入模块:导入必要的模块和类,包括YOLO模型和OBB模型等。

  2. OBBTrainer类:这是一个继承自DetectionTrainer的类,专门用于训练定向边界框(OBB)模型。

  3. __init__方法:构造函数,初始化OBBTrainer对象。可以接受配置参数和覆盖参数,默认任务类型设置为"obb"。

  4. get_model方法:用于创建并返回一个OBBModel实例。可以根据提供的配置和权重进行初始化。

  5. get_validator方法:返回一个OBBValidator实例,用于验证模型的性能。定义了损失名称以便后续的损失计算和监控。

这个程序文件定义了一个名为 OBBTrainer 的类,继承自 yolo.detect.DetectionTrainer,用于基于定向边界框(Oriented Bounding Box, OBB)模型的训练。文件开头包含了版权信息,说明该代码遵循 AGPL-3.0 许可证。

OBBTrainer 类的构造函数 __init__ 中,首先检查传入的 overrides 参数是否为 None,如果是,则初始化为空字典。接着,将任务类型设置为 “obb”,然后调用父类的构造函数进行初始化,传入配置、覆盖参数和回调函数。

get_model 方法用于返回一个初始化的 OBBModel 实例。该方法接受配置和权重参数,创建一个新的 OBBModel 对象,并在需要时加载指定的权重文件。这个模型是基于给定的配置和数据集类别数(nc)进行初始化的。

get_validator 方法则返回一个 OBBValidator 实例,用于对 YOLO 模型进行验证。在这个方法中,定义了损失名称,包括 “box_loss”、“cls_loss” 和 “dfl_loss”,并创建一个 OBBValidator 对象,传入测试数据加载器、保存目录和参数的副本。

整个类的设计目的是为了简化和优化基于 OBB 的模型训练过程,提供了模型初始化和验证的功能,使得用户可以方便地进行训练和评估。示例代码展示了如何使用 OBBTrainer 类进行训练,包括模型文件、数据集配置和训练轮数的设置。

11.3 ui.py
import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令
    result = subprocess.run(command, shell=True)
    if result.returncode != 0:
        print("脚本运行出错。")


# 实例化并运行应用
if __name__ == "__main__":
    # 指定您的脚本路径
    script_path = "web.py"  # 这里直接指定脚本路径

    # 运行脚本
    run_script(script_path)

代码核心部分注释

  1. 导入模块

    • import sys:导入系统相关的模块,用于获取当前 Python 解释器的路径。
    • import subprocess:导入子进程模块,用于在 Python 中执行外部命令。
  2. 定义 run_script 函数

    • 该函数接收一个参数 script_path,表示要运行的 Python 脚本的路径。
    • 函数内部首先获取当前 Python 解释器的路径,存储在 python_path 变量中。
    • 然后构建一个命令字符串 command,该命令使用当前 Python 解释器运行 streamlit 模块,并指定要运行的脚本。
    • 使用 subprocess.run 执行构建的命令。如果命令执行失败(返回码不为 0),则打印错误信息。
  3. 主程序入口

    • 使用 if __name__ == "__main__": 判断当前模块是否为主程序。
    • 指定要运行的脚本路径 script_path,这里直接赋值为 "web.py"
    • 调用 run_script 函数,传入脚本路径以执行该脚本。

这个程序文件的主要功能是使用当前的 Python 环境来运行一个指定的脚本,具体来说是运行一个名为 web.py 的脚本。文件中首先导入了必要的模块,包括 sysossubprocess,以及一个自定义的 abs_path 函数,用于获取脚本的绝对路径。

run_script 函数中,首先获取当前 Python 解释器的路径,这样可以确保使用正确的 Python 环境来执行脚本。接着,构建一个命令字符串,这个命令会调用 streamlit 模块来运行指定的脚本。streamlit 是一个用于构建数据应用的库,因此这个程序的目的是启动一个基于 streamlit 的 web 应用。

使用 subprocess.run 方法来执行构建好的命令。这个方法会在新的 shell 中运行命令,并等待其完成。如果脚本运行过程中出现错误,返回码不为零,程序会打印出“脚本运行出错”的提示信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保只有在直接运行这个文件时才会执行后面的代码。这里指定了要运行的脚本路径为 web.py,并调用 run_script 函数来执行这个脚本。

总体来说,这个程序的设计简单明了,主要用于方便地启动一个基于 streamlit 的 Python 脚本,适合用于数据可视化或应用开发的场景。

11.4 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\mlflow.py

以下是经过简化和注释的核心代码部分:

# 导入必要的库和模块
from ultralytics.utils import LOGGER, RUNS_DIR, SETTINGS, TESTS_RUNNING, colorstr

try:
    import os
    import mlflow  # 导入MLflow库

    # 确保在非测试环境下运行,并且MLflow集成已启用
    assert not TESTS_RUNNING or 'test_mlflow' in os.environ.get('PYTEST_CURRENT_TEST', '')
    assert SETTINGS['mlflow'] is True  # 验证集成是否启用

    # 确保mlflow模块是有效的
    assert hasattr(mlflow, '__version__')  
    from pathlib import Path
    PREFIX = colorstr('MLflow: ')  # 设置日志前缀

except (ImportError, AssertionError):
    mlflow = None  # 如果导入失败,则将mlflow设置为None


def on_pretrain_routine_end(trainer):
    """
    在预训练结束时记录训练参数到MLflow。

    参数:
        trainer (ultralytics.engine.trainer.BaseTrainer): 包含要记录的参数的训练对象。

    全局变量:
        mlflow: 用于记录的mlflow模块。

    环境变量:
        MLFLOW_TRACKING_URI: MLflow跟踪的URI。如果未设置,默认为'runs/mlflow'。
        MLFLOW_EXPERIMENT_NAME: MLflow实验的名称。如果未设置,默认为trainer.args.project。
        MLFLOW_RUN: MLflow运行的名称。如果未设置,默认为trainer.args.name。
    """
    global mlflow

    # 获取跟踪URI,默认为'runs/mlflow'
    uri = os.environ.get('MLFLOW_TRACKING_URI') or str(RUNS_DIR / 'mlflow')
    LOGGER.debug(f'{PREFIX} tracking uri: {uri}')
    mlflow.set_tracking_uri(uri)  # 设置MLflow跟踪URI

    # 设置实验和运行名称
    experiment_name = os.environ.get('MLFLOW_EXPERIMENT_NAME') or trainer.args.project or '/Shared/YOLOv8'
    run_name = os.environ.get('MLFLOW_RUN') or trainer.args.name
    mlflow.set_experiment(experiment_name)  # 设置实验名称

    mlflow.autolog()  # 启用自动记录
    try:
        # 开始MLflow运行
        active_run = mlflow.active_run() or mlflow.start_run(run_name=run_name)
        LOGGER.info(f'{PREFIX}logging run_id({active_run.info.run_id}) to {uri}')
        
        # 提供查看日志的本地服务器地址
        if Path(uri).is_dir():
            LOGGER.info(f"{PREFIX}view at http://127.0.0.1:5000 with 'mlflow server --backend-store-uri {uri}'")
        
        # 记录训练参数
        mlflow.log_params(dict(trainer.args))
    except Exception as e:
        LOGGER.warning(f'{PREFIX}WARNING ⚠️ Failed to initialize: {e}\n'
                       f'{PREFIX}WARNING ⚠️ Not tracking this run')


def on_fit_epoch_end(trainer):
    """在每个训练周期结束时记录训练指标到MLflow。"""
    if mlflow:
        # 清理指标名称并记录
        sanitized_metrics = {k.replace('(', '').replace(')', ''): float(v) for k, v in trainer.metrics.items()}
        mlflow.log_metrics(metrics=sanitized_metrics, step=trainer.epoch)


def on_train_end(trainer):
    """在训练结束时记录模型工件。"""
    if mlflow:
        # 记录最佳模型的目录
        mlflow.log_artifact(str(trainer.best.parent))  
        
        # 记录保存目录中的所有文件
        for f in trainer.save_dir.glob('*'):
            if f.suffix in {'.png', '.jpg', '.csv', '.pt', '.yaml'}:
                mlflow.log_artifact(str(f))

        mlflow.end_run()  # 结束MLflow运行
        LOGGER.info(f'{PREFIX}results logged to {mlflow.get_tracking_uri()}\n'
                    f"{PREFIX}disable with 'yolo settings mlflow=False'")


# 定义回调函数字典
callbacks = {
    'on_pretrain_routine_end': on_pretrain_routine_end,
    'on_fit_epoch_end': on_fit_epoch_end,
    'on_train_end': on_train_end} if mlflow else {}

代码注释说明:

  1. 导入模块:导入必要的库和模块,包括Ultralytics的工具和MLflow库。
  2. 环境检查:确保在非测试环境下运行,并且MLflow集成已启用。
  3. 函数定义
    • on_pretrain_routine_end:在预训练结束时记录训练参数,包括设置跟踪URI、实验名称和运行名称。
    • on_fit_epoch_end:在每个训练周期结束时记录训练指标。
    • on_train_end:在训练结束时记录模型工件,包括最佳模型和其他文件。
  4. 回调函数字典:根据是否成功导入MLflow,定义相应的回调函数。

这个程序文件是用于Ultralytics YOLO模型的MLflow日志记录模块。MLflow是一个开源平台,用于管理机器学习生命周期,包括实验跟踪、模型管理和部署等功能。该模块的主要功能是记录训练过程中的参数、指标和模型工件,以便于后续的分析和比较。

文件开头包含了一些注释,说明了该模块的用途和基本命令。用户可以通过设置环境变量来配置实验名称、运行名称以及MLflow服务器的URI。具体的命令包括设置项目名称、运行名称、启动本地MLflow服务器以及终止所有正在运行的MLflow服务器实例。

接下来,代码导入了一些必要的库和模块,包括Ultralytics的日志记录器、运行目录、设置和颜色字符串等。然后,代码尝试导入MLflow模块,并进行了一些基本的检查,确保MLflow模块可用且集成已启用。

在定义的三个主要回调函数中,on_pretrain_routine_end函数在预训练例程结束时记录训练参数。它根据环境变量和训练器的参数设置MLflow的跟踪URI、实验名称和运行名称,并启动MLflow运行。如果初始化失败,会记录警告信息。

on_fit_epoch_end函数在每个训练周期结束时记录训练指标。它会清理指标的键名,去掉括号,并将其作为浮点数记录到MLflow中。

on_train_end函数在训练结束时记录模型工件。它会记录最佳模型和最后模型的权重文件,并将保存目录中的其他相关文件(如图像、CSV文件等)也记录到MLflow中。最后,它会结束当前的MLflow运行,并记录结果的URI。

最后,代码创建了一个回调字典,包含了三个回调函数,如果MLflow模块可用的话。这个字典可以在训练过程中被调用,以便在适当的时机记录相应的信息。

整体来看,这个模块为YOLO模型的训练过程提供了强大的日志记录功能,方便用户追踪和管理实验结果。

11.5 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\classify\train.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
from ultralytics.data import ClassificationDataset, build_dataloader
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK
from ultralytics.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first

class ClassificationTrainer(BaseTrainer):
    """
    扩展自 BaseTrainer 类的分类训练器,用于基于分类模型的训练。
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """初始化 ClassificationTrainer 对象,支持配置覆盖和回调函数。"""
        if overrides is None:
            overrides = {}
        overrides['task'] = 'classify'  # 设置任务类型为分类
        if overrides.get('imgsz') is None:
            overrides['imgsz'] = 224  # 默认图像大小为224
        super().__init__(cfg, overrides, _callbacks)

    def set_model_attributes(self):
        """从加载的数据集中设置 YOLO 模型的类名。"""
        self.model.names = self.data['names']

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回配置好的 PyTorch 模型以用于 YOLO 训练。"""
        model = ClassificationModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
        if weights:
            model.load(weights)  # 加载权重

        for m in model.modules():
            if not self.args.pretrained and hasattr(m, 'reset_parameters'):
                m.reset_parameters()  # 重置参数
            if isinstance(m, torch.nn.Dropout) and self.args.dropout:
                m.p = self.args.dropout  # 设置 dropout 概率
        for p in model.parameters():
            p.requires_grad = True  # 设置为可训练
        return model

    def build_dataset(self, img_path, mode='train', batch=None):
        """根据图像路径和模式(训练/测试等)创建 ClassificationDataset 实例。"""
        return ClassificationDataset(root=img_path, args=self.args, augment=mode == 'train', prefix=mode)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
        """返回带有图像预处理变换的 PyTorch DataLoader。"""
        with torch_distributed_zero_first(rank):  # 在分布式训练中只初始化一次数据集
            dataset = self.build_dataset(dataset_path, mode)

        loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank)
        return loader

    def preprocess_batch(self, batch):
        """预处理一批图像和类别数据。"""
        batch['img'] = batch['img'].to(self.device)  # 将图像移动到设备上
        batch['cls'] = batch['cls'].to(self.device)  # 将类别标签移动到设备上
        return batch

    def get_validator(self):
        """返回用于验证的 ClassificationValidator 实例。"""
        self.loss_names = ['loss']  # 定义损失名称
        return yolo.classify.ClassificationValidator(self.test_loader, self.save_dir)

    def final_eval(self):
        """评估训练后的模型并保存验证结果。"""
        for f in self.last, self.best:
            if f.exists():
                strip_optimizer(f)  # 去除优化器信息
                if f is self.best:
                    LOGGER.info(f'\nValidating {f}...')
                    self.metrics = self.validator(model=f)  # 进行验证
                    self.metrics.pop('fitness', None)  # 移除不需要的指标
        LOGGER.info(f"Results saved to {self.save_dir}")

代码核心部分说明:

  1. 类的定义ClassificationTrainer 继承自 BaseTrainer,用于处理分类任务的训练。
  2. 初始化方法:在初始化时设置任务类型为分类,并设置默认图像大小。
  3. 模型设置set_model_attributes 方法用于从数据集中提取类名,get_model 方法用于构建和加载模型。
  4. 数据集和数据加载器build_datasetget_dataloader 方法用于创建数据集和数据加载器,支持训练和测试模式。
  5. 批处理预处理preprocess_batch 方法将图像和标签移动到指定设备上。
  6. 验证和评估get_validator 方法返回验证器实例,final_eval 方法用于评估模型并保存结果。

这些部分是实现分类训练的核心功能,其他方法和细节则用于支持训练过程中的各种操作。

该程序文件是用于训练YOLOv8分类模型的Python脚本,继承自基础训练器类BaseTrainer。它主要包含了模型的初始化、数据集的构建、数据加载、模型设置、训练过程中的损失计算和可视化等功能。

首先,程序导入了必要的库和模块,包括PyTorch、Torchvision以及Ultralytics库中的各种组件。ClassificationTrainer类是该文件的核心,负责处理分类任务的训练过程。类的构造函数中,接收配置参数和覆盖参数,默认图像大小设置为224,并调用父类的初始化方法。

set_model_attributes方法中,模型的类名会根据加载的数据集进行设置。get_model方法则负责返回一个配置好的PyTorch模型,并根据需要加载预训练权重。模型的各个模块会根据训练需求进行参数重置和设置。

setup_model方法用于加载、创建或下载模型,支持从本地文件、Torchvision模型或Ultralytics资源中加载。build_dataset方法创建一个分类数据集实例,而get_dataloader方法则返回一个PyTorch的DataLoader,用于图像的预处理和批量加载。

在训练过程中,preprocess_batch方法对每个批次的图像和类别进行预处理。progress_string方法生成一个格式化的字符串,显示训练进度。get_validator方法返回一个验证器实例,用于模型验证。

label_loss_items方法返回带标签的训练损失项字典,尽管对于分类任务并不需要,但在分割和检测任务中是必要的。plot_metrics方法用于从CSV文件中绘制训练指标。final_eval方法在训练结束后评估模型并保存验证结果。

最后,plot_training_samples方法用于绘制带有注释的训练样本图像,帮助可视化训练过程中的样本数据。整体来看,该文件为YOLOv8分类模型的训练提供了全面的支持,涵盖了从数据加载到模型评估的各个环节。

11.6 train.py

以下是代码中最核心的部分,并附上详细的中文注释:

class DetectionTrainer(BaseTrainer):
    """
    DetectionTrainer类,继承自BaseTrainer类,用于基于检测模型的训练。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,`train`表示训练模式,`val`表示验证模式,用户可以为每种模式自定义不同的数据增强。
            batch (int, optional): 批次大小,仅用于`rect`模式。默认为None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构造并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式是训练或验证
        with torch_distributed_zero_first(rank):  # 如果使用分布式数据并行,只初始化数据集一次
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        if getattr(dataset, "rect", False) and shuffle:
            LOGGER.warning("WARNING ⚠️ 'rect=True'与DataLoader的shuffle不兼容,设置shuffle=False")
            shuffle = False  # 如果使用rect模式,禁用打乱
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对一批图像进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 将图像转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度训练
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择一个新的尺寸
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值缩放
            batch["img"] = imgs  # 更新批次中的图像
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def get_validator(self):
        """返回用于YOLO模型验证的DetectionValidator。"""
        self.loss_names = "box_loss", "cls_loss", "dfl_loss"  # 定义损失名称
        return yolo.detect.DetectionValidator(
            self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
        )  # 返回验证器

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )  # 绘制图像并保存

    def plot_metrics(self):
        """从CSV文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

主要功能说明:

  1. 数据集构建build_dataset方法用于构建YOLO数据集,支持训练和验证模式。
  2. 数据加载器get_dataloader方法构造数据加载器,支持多线程和数据打乱。
  3. 批处理预处理preprocess_batch方法对输入图像进行预处理,包括归一化和多尺度调整。
  4. 模型获取get_model方法用于创建和加载YOLO检测模型。
  5. 验证器获取get_validator方法返回用于模型验证的对象。
  6. 绘图功能plot_training_samplesplot_metrics方法用于可视化训练样本和指标。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的脚本,基于 Ultralytics 提供的框架。文件中定义了一个名为 DetectionTrainer 的类,该类继承自 BaseTrainer,并专门用于处理目标检测任务。

在这个类中,首先定义了一个 build_dataset 方法,用于构建 YOLO 数据集。该方法接收图像路径、模式(训练或验证)和批次大小作为参数,使用 build_yolo_dataset 函数生成数据集,支持不同模式下的增强处理。

接下来,get_dataloader 方法用于构建数据加载器。它根据传入的模式(训练或验证)和批次大小来创建数据加载器,并处理数据集的初始化和分布式训练的相关设置。

preprocess_batch 方法负责对输入的图像批次进行预处理,包括将图像缩放到合适的大小并转换为浮点数格式。该方法还支持多尺度训练,通过随机选择图像大小来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等,以确保模型能够正确处理训练数据。

get_model 方法用于返回一个 YOLO 检测模型实例,支持加载预训练权重。

get_validator 方法返回一个用于模型验证的 DetectionValidator 实例,负责计算和记录损失值。

label_loss_items 方法用于返回一个包含训练损失项的字典,便于后续的监控和分析。

progress_string 方法生成一个格式化的字符串,用于显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注,帮助可视化训练过程中的数据。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和创建带标签的训练图,以便分析模型的性能和训练效果。

整体来看,这个文件实现了 YOLO 模型训练的核心功能,提供了数据处理、模型构建、训练监控和结果可视化等一系列功能,便于用户进行目标检测任务的训练和评估。

12.系统整体结构(节选)

整体功能和构架概括

该程序整体是一个基于Ultralytics YOLOv8框架的目标检测和分类模型训练系统。它提供了多个模块和工具,用于数据处理、模型构建、训练过程监控、结果评估和可视化。系统的架构清晰,主要分为以下几个部分:

  1. 模型定义与构建:包括模型的头部模块、分类模块和目标检测模块,负责构建和初始化不同类型的YOLO模型。
  2. 训练与验证:提供训练器类,负责训练过程中的数据加载、模型训练、损失计算和验证等功能。
  3. 回调与日志记录:通过回调函数记录训练过程中的重要信息,支持与MLflow等工具集成,便于实验管理和结果跟踪。
  4. 用户界面与脚本执行:提供一个简单的用户界面脚本,用于启动和运行训练过程。
  5. 工具与实用功能:包括数据集构建、下载工具、可视化工具等,增强了系统的实用性和灵活性。

文件功能整理表

文件路径功能描述
code\ultralytics\nn\modules\head.py定义YOLO模型的头部模块,包括检测、分割、姿态估计和分类功能。
code\ultralytics\models\yolo\obb\train.py实现基于定向边界框(OBB)的YOLO模型训练,包含数据集构建、模型初始化和训练过程。
ui.py提供一个简单的用户界面,用于运行指定的web.py脚本,启动基于Streamlit的应用。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\mlflow.py实现与MLflow的集成,记录训练过程中的参数、指标和模型工件,便于实验管理。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\classify\train.py实现YOLOv8分类模型的训练,处理数据加载、模型构建和训练过程中的损失计算与可视化。
train.py主要用于YOLO目标检测模型的训练,处理数据集构建、模型初始化和训练监控等功能。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\__init__.py初始化回调模块,整合不同的回调函数,供训练过程调用。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\sam\predict.py实现基于YOLO模型的预测功能,处理输入数据并生成预测结果。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\dvc.py实现与DVC(数据版本控制)的集成,管理数据和模型版本,便于实验复现。
code\ultralytics\cfg\__init__.py初始化配置模块,提供配置参数的管理和加载功能。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\attention.py实现注意力机制模块,增强模型的特征提取能力。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\trackers\track.py实现目标跟踪功能,结合YOLO模型进行实时目标跟踪。
code\ultralytics\utils\downloads.py提供数据下载工具,支持从网络下载所需的数据集和模型权重。

以上表格总结了各个文件的主要功能,展示了整个系统的模块化设计和功能分布。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/Ar-Inspection391

参考原始博客2: https://github.com/VisionMillionDataStudio/Ar-Inspection391

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值