自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(91)
  • 收藏
  • 关注

原创 书籍检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“all-books”的数据集,以训练和改进YOLOv8的书籍检测系统。该数据集专注于书籍这一特定类别,旨在提升计算机视觉模型在书籍识别和定位任务中的性能。数据集的类别数量为1,且唯一的类别名称为“book”。这一设计简化了模型的训练过程,使其能够专注于识别书籍的特征,而不受其他类别的干扰。“all-books”数据集的构建考虑到了多样性和代表性,涵盖了不同类型、尺寸和封面的书籍。

2024-10-02 14:32:32 1414

原创 快递盒检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“1_box”的数据集,以改进YOLOv8的快递盒检测系统。该数据集专门为快递盒的检测任务而设计,包含了丰富的样本和多样的场景,旨在提高模型在实际应用中的准确性和鲁棒性。数据集的类别数量为四个,具体类别包括“0”、“1”、“15”和“box”。这些类别代表了不同类型的快递盒,涵盖了从常见的标准快递盒到特殊形状和尺寸的包装,确保了模型在多种情况下的有效性。“1_box”数据集的构建经过精心设计,包含了大量的标注图像,涵盖了各种光照条件、背景环境和拍摄角度。

2024-10-01 13:07:38 1178

原创 黄桃病害检测系统源码分享

数据集信息展示在现代农业中,作物病害的及时检测与处理至关重要,尤其是在黄桃的种植过程中,病害的发生不仅影响了果实的质量和产量,还可能对整个生态系统造成负面影响。为此,我们构建了一个专门用于训练改进YOLOv8的黄桃病害检测系统的数据集,命名为“Yello peach disease”。该数据集旨在通过深度学习技术,提高黄桃病害的识别率,从而为农民提供更为高效的病害管理工具。“Yello peach disease”数据集包含12个类别,涵盖了黄桃常见的多种病害。

2024-09-28 11:48:26 1210

原创 体育球体检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“vv_dataset_only_ball”的数据集,以训练和改进YOLOv8的体育球体检测系统。该数据集专注于单一类别的物体检测,具体为“ball”,其类别数量为1。这一特定的聚焦使得数据集在体育场景中的应用尤为有效,尤其是在涉及到球类运动的环境中,如足球、篮球、网球等。通过精确的标注和丰富的样本,数据集为模型提供了必要的训练基础,旨在提升其在动态场景下的检测能力和准确性。

2024-09-27 23:01:15 1275

原创 零售监控异常行为检测系统源码分享

数据集信息展示在现代零售环境中,监控异常行为的能力至关重要,尤其是在防止盗窃和提高顾客体验方面。为此,我们构建了一个用于训练改进YOLOv8的零售监控异常行为检测系统的数据集,名为“CC TV Footage Annotation B10”。该数据集专门设计用于捕捉和标注零售店内的各种行为,以便于机器学习模型的训练和优化。通过对视频监控画面的精确标注,我们能够为模型提供丰富的上下文信息,从而提高其在实际应用中的准确性和可靠性。

2024-09-27 20:41:09 1094

原创 水果种类检测系统源码分享

数据集信息展示在现代计算机视觉领域,数据集的质量和多样性直接影响着模型的训练效果和应用性能。为了改进YOLOv8的水果种类检测系统,我们选用了名为“ayushvision_fruits”的数据集,该数据集专注于特定的植物种类,涵盖了八个独特的类别。

2024-09-27 18:20:56 1247

原创 投篮动作识别系统源码分享

数据集信息展示在本研究中,我们采用了名为“1207_dishith_anant_akshita”的数据集,以改进YOLOv8的投篮动作识别系统。该数据集的设计旨在为投篮动作的识别提供丰富的样本和多样化的类别信息,进而提升模型在实际应用中的准确性和鲁棒性。

2024-09-27 15:56:40 1079

原创 房屋受潮湿度检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“ttest1234”的数据集,以支持对房屋受潮湿度检测系统的训练,旨在改进YOLOv8模型的性能。该数据集专注于湿度检测,具有单一类别,具体为“humidity”。这一设计使得数据集在处理湿度相关问题时具有高度的针对性和有效性。“ttest1234”数据集的构建考虑到了房屋环境中湿度变化的多样性和复杂性。数据集中包含了多种不同场景下的湿度图像,这些图像不仅展示了不同房屋结构的内部环境,还涵盖了多种气候条件下的湿度表现。

2024-09-26 16:51:17 533

原创 交通信号灯检测系统源码分享

数据集信息展示在本研究中,我们使用的数据集名为“trafic_lights_detection”,旨在为改进YOLOv8的交通信号灯检测系统提供高质量的训练数据。该数据集专注于交通信号灯的检测,具有单一类别,具体为“Traffic Light”。这一设计选择反映了我们在目标检测任务中对交通信号灯的高度关注,旨在提升模型在复杂交通环境中的识别能力。“trafic_lights_detection”数据集的构建过程经过精心设计,以确保其在多种场景下的适用性和有效性。

2024-09-26 14:31:10 1085

原创 时间戳检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“TimeStamp”的数据集,以支持对YOLOv8模型在时间戳检测系统中的改进。该数据集专门设计用于训练和评估时间戳识别的性能,具有独特的结构和多样化的样本,以确保模型在实际应用中的准确性和鲁棒性。“TimeStamp”数据集包含三个主要类别,分别标记为‘0’,‘1’和‘2’,这些类别代表了不同类型的时间戳或其变体。这种分类方式不仅有助于模型学习时间戳的基本特征,还能够提高其在复杂场景下的识别能力。

2024-09-25 23:47:39 892

原创 工具检测系统源码分享

数据集信息展示在现代计算机视觉领域,数据集的构建与选择对模型的训练和性能优化至关重要。本次研究所采用的数据集名为“test5”,专门用于训练和改进YOLOv8工具检测系统。该数据集的设计旨在提升模型在特定工具检测任务中的准确性和鲁棒性,尤其是在复杂环境下的表现。数据集“test5”包含了三种主要类别的工具,分别是钳子(pliers)、剪刀(scissors)和螺丝刀(screwdrivers),这些工具在日常生活和工业应用中具有广泛的使用场景。

2024-09-25 21:27:13 1025

原创 注射器检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“syringe detection”的数据集,以改进YOLOv8模型在注射器检测任务中的性能。该数据集专门设计用于训练和评估计算机视觉算法,尤其是在医疗和生物科学领域中对注射器的自动检测与识别。数据集的类别数量为三,具体类别包括:背景(.)、非注射器物体(0)以及注射器(syringe)。这种类别划分使得模型能够在复杂的场景中有效地区分注射器与其他物体,从而提高检测的准确性和鲁棒性。数据集中的图像样本涵盖了多种场景和环境,以确保模型在不同条件下的泛化能力。

2024-09-25 19:06:52 937

原创 运动安全头盔检测系统源码分享

数据集信息展示在现代运动安全管理中,头盔的有效检测与识别至关重要。为此,本研究选用了名为“SportsLocationTracking_Helmets”的数据集,以改进YOLOv8模型在运动安全头盔检测系统中的应用。该数据集专注于运动场景中的头盔识别,旨在为运动员的安全提供更为精准的技术支持。“SportsLocationTracking_Helmets”数据集的设计充分考虑了运动环境的复杂性和多样性。数据集中包含的类别数量为1,专注于“helmet”这一单一类别。

2024-09-25 14:46:36 889

原创 烟雾检测与吸烟行为识别系统源码分享

数据集信息展示在本研究中,我们使用了名为“smoke detection1”的数据集,以支持改进YOLOv8模型在烟雾检测与吸烟行为识别系统中的应用。该数据集专门设计用于识别与吸烟相关的多种行为和物体,具有丰富的多样性和高质量的标注信息,为模型的训练提供了坚实的基础。“smoke detection1”数据集包含三类主要对象,分别是“cigarette”(香烟)、“face-cigarette-smoking”(面部吸烟行为)和“smoke”(烟雾)。

2024-09-25 12:26:12 1055

原创 水表读数数字识别系统源码分享

数据集信息展示在现代智能水表读数数字识别系统的研究中,数据集的构建与选择至关重要。为实现对水表读数的高效识别与分类,我们采用了名为“seeed_meter_digit”的数据集。该数据集专门设计用于训练和改进YOLOv8模型,以提高其在水表数字识别任务中的准确性和鲁棒性。“seeed_meter_digit”数据集包含11个类别,具体类别包括数字0至9,以及一个特殊类别“N”,用于表示未识别或无法读取的情况。

2024-09-24 18:05:41 827

原创 垃圾分类检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“Robot”的数据集,以改进YOLOv8模型在垃圾分类检测系统中的性能。该数据集专为垃圾分类任务设计,涵盖了多种垃圾类型,旨在提升自动化垃圾分类的准确性和效率。数据集包含8个类别,具体类别包括:其他(Other)、垃圾桶(bin)、可堆肥物(compostable)、一般垃圾(general)、玻璃(glass)、金属(metal)、塑料(plastic)和可回收物(recycle)。

2024-09-24 15:45:25 828

原创 电阻器检测系统源码分享

数据集信息展示在现代计算机视觉领域,数据集的质量和多样性对模型的训练效果至关重要。本研究所使用的数据集名为“Resistor Detection”,旨在为改进YOLOv8的电阻器检测系统提供高质量的训练样本。该数据集包含三类主要信息,分别是类别数量、类别名称以及数据集的来源和导出时间。这些信息不仅为模型的训练提供了基础数据支持,也为后续的实验分析和结果评估奠定了坚实的基础。首先,数据集的类别数量为3,表明该数据集在电阻器检测任务中涵盖了多个相关的分类。

2024-09-24 13:24:59 981

原创 二维码与条形码检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“qrcode_barcode_selected”的数据集,旨在改进YOLOv8模型在二维码与条形码检测方面的性能。该数据集的设计考虑了实际应用中的多样性与复杂性,包含了两种主要类别:条形码(barcode)和二维码(qrcode)。这两种类别在现代商业、物流、以及信息传递中扮演着至关重要的角色,因此,准确高效地检测和识别它们是提升自动化系统性能的关键。“qrcode_barcode_selected”数据集的类别数量为2,分别是条形码和二维码。

2024-09-24 11:04:36 550

原创 跆拳道动作识别系统源码分享

数据集信息展示在构建和优化跆拳道动作识别系统的过程中,数据集的选择和构建至关重要。本项目采用的数据集名为“projectUniteam”,其设计旨在为改进YOLOv8模型提供丰富的训练样本,以实现高效且准确的动作识别。该数据集包含九个不同的类别,涵盖了跆拳道中常见的动作,这些类别的选择不仅反映了跆拳道的基本动作,也为模型的训练提供了多样性和复杂性。首先,数据集中包含的第一个类别是“beforereadypose”,这一动作是跆拳道练习中的基础准备姿势,通常是运动员在开始任何技术动作之前所采取的姿势。

2024-09-23 23:51:08 899

原创 柑橘果实检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“ponkan-sythetic-v2-24042024”的数据集,以改进YOLOv8的柑橘果实检测系统。该数据集专门为柑橘类水果的检测任务而设计,旨在提高检测精度和效率,尤其是在复杂的环境中。数据集的独特之处在于其合成数据的特性,这使得我们能够在不同的光照、背景和果实状态下进行训练,从而增强模型的泛化能力。“ponkan-sythetic-v2-24042024”数据集包含了丰富的图像样本,所有样本均为合成生成,确保了数据的多样性和复杂性。

2024-09-23 21:30:40 804

原创 植物检测与分类系统源码分享

数据集信息展示在本研究中,我们使用了名为“Plants Rythmes”的数据集,以支持对植物检测与分类系统的改进,特别是针对YOLOv8模型的训练。该数据集专注于植物的视觉特征,旨在为计算机视觉领域提供丰富的样本和标注,以提升模型在植物识别任务中的准确性和鲁棒性。数据集的类别数量为2,具体类别包括“plant”和“plants”,这两个类别的设置旨在涵盖植物的多样性和复杂性,确保模型能够在不同的场景中有效识别和分类。

2024-09-23 19:10:00 1120

原创 螺栓螺母检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“Phd”的数据集,以训练和改进YOLOv8模型,旨在实现高效的螺栓螺母检测系统。该数据集专门针对螺栓和螺母的视觉识别任务进行了精心设计,包含了多种类别的样本,能够有效支持深度学习模型的训练与评估。数据集的类别数量为五个,具体类别包括:‘0-000’,‘1-000’,‘2-000’,‘3-000’和‘4-000’。这些类别代表了不同类型的螺栓和螺母,涵盖了从标准螺栓到特殊设计的螺母,确保了模型在实际应用中的广泛适用性。

2024-09-23 16:49:26 583

原创 阀门类型图检测系统源码分享

数据集信息展示在现代工业自动化和智能制造的背景下,阀门类型的准确识别与分类显得尤为重要。为此,我们构建了一个名为“P and ID AI”的数据集,旨在为改进YOLOv8的阀门类型图检测系统提供丰富的训练数据。该数据集包含35个不同的阀门类别,涵盖了广泛的工业应用场景,确保了模型在多样化环境中的有效性和鲁棒性。

2024-09-23 14:28:53 946

原创 油井检测系统源码分享

项目参考项目来源研究背景与意义随着全球能源需求的不断增长,石油作为重要的能源资源,其开采和管理变得愈发重要。油井的检测与监控不仅关系到油田的生产效率,还直接影响到环境保护和资源的可持续利用。传统的油井检测方法往往依赖人工巡检,效率低下且容易受到人为因素的影响,无法满足现代化油田管理的需求。因此,基于计算机视觉和深度学习技术的自动化油井检测系统应运而生,成为提升油田管理效率的重要手段。近年来,YOLO(You Only Look Once)系列目标检测算法因其高效性和实时性而受到广泛关注。

2024-09-22 20:54:06 1034

原创 日常物品检测系统源码分享

项目参考项目来源研究背景与意义随着人工智能技术的迅猛发展,计算机视觉作为其重要分支之一,正逐渐渗透到我们日常生活的各个领域。物体检测技术,尤其是在智能监控、自动驾驶、智能家居等应用场景中,发挥着越来越重要的作用。YOLO(You Only Look Once)系列模型因其高效的实时检测能力和较高的准确率,成为了物体检测领域的研究热点。YOLOv8作为该系列的最新版本,结合了深度学习的最新进展,展现出了更强的性能和更广泛的应用潜力。

2024-09-22 14:01:42 1293

原创 喷嘴检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“Nozzle Detection”的数据集,以训练和改进YOLOv8模型在喷嘴检测系统中的表现。该数据集专门针对喷嘴的识别与分类任务,包含了丰富的图像数据,旨在提高计算机视觉算法在工业应用中的准确性和效率。数据集的设计充分考虑了喷嘴在不同环境和条件下的表现,确保模型能够在多样化的场景中保持良好的识别能力。“Nozzle Detection”数据集包含两个主要类别,分别标记为“0”和“1”。

2024-09-22 00:03:58 1139

原创 黑板手写文本检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“new Dataset”的数据集,以支持对YOLOv8模型的改进,专注于黑板手写文本的检测系统。该数据集专门设计用于捕捉和识别两种主要类别的内容:手写文本和白板。这一选择不仅反映了实际应用场景的需求,也为模型的训练提供了丰富的多样性和复杂性。“new Dataset”包含了多样化的图像样本,涵盖了不同书写风格、字迹清晰度和背景环境。这些样本在拍摄时考虑到了多种光照条件和角度变化,确保模型在各种现实场景中都能保持良好的检测性能。

2024-09-21 12:51:42 1199

原创 建筑物检测与识别系统源码分享

数据集信息展示在建筑物检测与识别领域,数据集的质量和多样性直接影响到模型的训练效果和应用性能。本研究采用的“Morocco lens”数据集,专门针对摩洛哥的历史建筑和文化遗址进行了精心的构建,旨在提升YOLOv8模型在建筑物检测与识别任务中的表现。该数据集包含19个类别,涵盖了摩洛哥丰富的建筑遗产,体现了该地区独特的历史和文化背景。

2024-09-20 12:11:46 1259

原创 船只与角色检测系统源码分享

数据集信息展示在现代计算机视觉领域,尤其是在目标检测任务中,数据集的质量和多样性直接影响到模型的性能和泛化能力。本研究所使用的数据集名为“Merged Roblox and Ship”,其主要目的是为了改进YOLOv8模型在船只与角色检测系统中的表现。该数据集的构建旨在融合不同场景下的目标特征,特别是针对船只和虚拟角色的检测,具有重要的研究价值和应用潜力。

2024-09-20 09:53:46 1066

原创 表面缺陷检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“Mask_Neu_F”的数据集,以训练和改进YOLOv8模型在表面缺陷检测中的性能。该数据集专门针对工业表面缺陷的识别与分类,涵盖了六种不同类型的缺陷,分别为:crazing(表面开裂)、inclusion(夹杂物)、patches(斑点)、pitted_surface(凹坑表面)、rolled-in_scale(卷入的鳞片)和scratches(划痕)。

2024-09-19 22:48:58 1389

原创 品牌标志检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“Logo Detection”的数据集,以训练和改进YOLOv8的品牌标志检测系统。该数据集专注于两个主要品牌的标志检测,分别是Adidas和Nike,具有良好的代表性和实用性。数据集的类别数量为2,分别对应于这两个知名品牌,充分体现了当今市场上运动品牌的竞争格局。Adidas和Nike作为全球领先的运动品牌,不仅在产品设计和市场营销上各具特色,而且它们的品牌标志在消费者心中也具有极高的辨识度。

2024-09-19 19:51:37 899

原创 教育材料内容检测系统源码分享

数据集信息展示在现代教育领域,随着数字化教学材料的普及,如何有效地识别和分析这些材料中的信息成为了一个重要的研究课题。为此,我们构建了一个名为“lect_design1”的数据集,旨在为改进YOLOv8的教育材料内容检测系统提供支持。该数据集专注于教育材料中的多种视觉元素,涵盖了12个不同的类别,能够帮助系统更好地理解和解析教学内容的结构与形式。“lect_design1”数据集的设计初衷是为了提升机器学习模型在教育材料中的应用能力,尤其是在内容识别和信息提取方面。

2024-09-19 10:35:56 1201

原创 鹰类目标检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“Kool Final”的数据集,以支持对鹰类目标检测系统的训练,旨在改进YOLOv8模型的性能。该数据集的设计专注于鹰类的识别与定位,具有极高的专业性和针对性。数据集的类别数量为1,且其唯一的类别名称为“Kool”,这表明该数据集专注于一种特定的目标——鹰。这种单一类别的设定使得模型在训练过程中能够更集中地学习鹰类的特征,从而提高检测的准确性和效率。

2024-09-18 23:59:47 1194

原创 轻生人员检测系统源码分享

数据集信息展示在现代计算机视觉领域,轻生人员检测系统的研究逐渐成为一个重要的课题,尤其是在公共安全和心理健康领域。为此,我们引入了名为“JumpD-Dangerous”的数据集,旨在为改进YOLOv8模型提供高质量的训练数据,以提升其在检测轻生行为方面的准确性和鲁棒性。该数据集专注于捕捉和识别与轻生相关的危险行为,具体类别数量为1,类别名称为“dangerous-behavior”。“JumpD-Dangerous”数据集的构建基于多种真实场景的监控视频和图像,涵盖了多种可能导致轻生的行为模式。

2024-09-18 21:38:12 931

原创 昆虫检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“Insects from afar”的数据集,以支持对昆虫检测系统的改进,特别是针对YOLOv8模型的训练与优化。该数据集专注于昆虫的识别与分类,旨在为昆虫生态学、农业监测以及生物多样性研究提供强有力的数据支持。数据集的设计理念是通过高质量的图像和标注,帮助研究人员和开发者更好地理解和应用计算机视觉技术于昆虫检测领域。

2024-09-18 18:21:47 1292

原创 鱼类种类检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“I, J, K types of fish”的数据集,以训练和改进YOLOv8模型,旨在提高鱼类种类检测系统的准确性和效率。

2024-09-18 15:47:30 1231

原创 叉车工人安全帽佩戴检测系统源码分享

数据集信息展示在当前的工业环境中,安全帽的佩戴是确保工人安全的重要措施之一。为了提升叉车工人佩戴安全帽的检测效率,研究团队构建了一个名为“helmet”的数据集,以支持改进YOLOv8模型在这一特定任务上的表现。该数据集专注于叉车工人及其周围环境中安全帽佩戴的监测,旨在通过深度学习技术提高安全管理的智能化水平。“helmet”数据集包含四个主要类别,分别为“cellphonerotation”、“facerotation”、“helmetrotation”和“personrotation”。

2024-09-17 21:42:55 1447

原创 手势检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“hand gesture and cloth detection”的数据集,以改进YOLOv8的手势检测系统。该数据集专门设计用于手势识别与服装检测,包含了多种手势类别,旨在为计算机视觉领域的相关应用提供高质量的训练数据。数据集的类别数量为五个,具体类别包括:Non-SKK、SKK、maju、none和stop。这些类别的选择反映了在实际应用中对手势识别的多样性需求,涵盖了从日常交流到特定指令的多种手势。

2024-09-17 18:57:47 1193

原创 人参部位检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“ginseng”的数据集,以支持对人参部位检测系统的训练与改进,特别是针对YOLOv8模型的优化。该数据集的设计旨在提供高质量的标注数据,以便于深度学习模型的有效训练和评估。数据集的类别数量为1,具体类别为“json”,这意味着数据集中包含了与人参相关的所有标注信息均以JSON格式存储,便于后续的数据解析和处理。“ginseng”数据集的构建过程注重数据的多样性和代表性,确保涵盖了人参在不同生长阶段、不同环境条件下的多种表现形式。

2024-09-17 16:12:38 1107

原创 散点图数据点集中区域定位系统源码分享

数据集信息展示在本研究中,我们采用了名为“full_pics_MAD_2”的数据集,以支持对YOLOv8模型的改进,特别是在散点图数据点集中区域定位系统的训练过程中。该数据集的设计旨在提供多样化且具有代表性的样本,以便更好地捕捉和识别不同类别的特征,从而提升模型的准确性和鲁棒性。“full_pics_MAD_2”数据集包含五个主要类别,分别为“coning”、“constant”、“multilayer”、“normal”和“rapid”。

2024-09-17 14:00:57 1191

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除