数论--多边形求重心及其面积

本文介绍了如何计算质量分布均匀或多变的多边形的重心,包括顶点质量和面积加权的计算方法,并提供了三角形面积计算的具体公式及C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分析:
多边形求重心分为几种情况:
1,质量集中在顶点上。n个顶点坐标为(xi,yi),质量为mi,则重心
  X = ∑( xi×mi ) / ∑mi
  Y = ∑( yi×mi ) / ∑mi
  特殊地,若每个点的质量相同,则
  X = ∑xi / n
  Y = ∑yi / n

2,质量分布均匀,与上面算法不同
  特殊地,质量均匀的三角形重心:
  X = ( x0 + x1 + x2 ) / 3
  Y = ( y0 + y1 + y2 ) / 3

3,质量分布不均匀。

解法:

以第一个顶点p0为原点,分别连接p1,p2,p3.....
将多边形划分为几个三角形,总面积为三角形面积和
若我们求出了每个三角形的重心和质量,可以构造一个新的多边形,顶点为所有三角形的重心,顶点质量为三角形的质量。这个新多边形的质量和重心与原多边形相同,即可使用第一种类型的公式计算出整个多边形的重心。

由于三角形的面积与质量成正比,所以我们这里用面积代替质量来计算,利用面积间接计算出多面型重心

当然多边形有可能为凹多边形,三角形有可能在多边形之外,因此,我们需要叉积计算三角形面积。

S =(x0*y1+x1*y2+x2*y0-x1*y0-x2*y1-x0*y2)

多边形重心问题

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=100000+5;
struct Node
{
    double x,y;
}node[maxn];
double Area(Node p0,Node p1,Node p2)
{
    double area;
    area=p0.x*p1.y+p1.x*p2.y+p2.x*p0.y-p1.x*p0.y-p2.x*p1.y-p0.x*p2.y;
    return area/2;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        Node p0,p1,p2;
        int m;
        scanf("%d",&m);
        scanf("%lf %lf",&p0.x,&p0.y);
        scanf("%lf %lf",&p1.x,&p1.y);
        double Sum_Area=0;
        double area;
        double Gsum_x=0,Gsum_y=0;
        for(int i=2;i<m;i++)
        {
            scanf("%lf %lf",&p2.x,&p2.y);
            area=Area(p0,p1,p2);
            Sum_Area+=area;
            Gsum_x+=(p0.x+p1.x+p2.x)*area;
            Gsum_y+=(p0.y+p1.y+p2.y)*area;
            p1=p2;
        }
        if(Sum_Area==0)
           printf("0.000 0.000\n");
        else
            printf("%.3lf %.3lf\n",abs(Sum_Area),Gsum_x/Sum_Area/3+Gsum_y/Sum_Area/3);
    }
    return 0;
}


内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值