Tensorflow实现Soft Regression识别手写数字完整代码

MNIST是一个非常简单的机器视觉数据集,由几万字28像素*28像素的手写数字组成,只包含灰度信息,我们的任务就是对这些数字图片进行分类。我们采用TensorFlow为我们封装过的一个MNIST。

完整代码如下:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)

print(mnist.train.images.shape,mnist.train.labels.shape)
print(mnist.test.images.shape,mnist.test.labels.shape)
print(mnist.validation.images.shape,mnist.validation.labels.shape)

import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32,[None,784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W)+b)

#定义loss function描述模型的分类精度
y_ = tf.placeholder(tf.float32,[None,10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),reduction_indices=[1]))

#定义优化算法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
tf.global_variables_initializer().run()

for i in range(1000):
    batch_xs,batch_ys = mnist.train.next_batch(100)
    train_step.run({x:batch_xs,y_:batch_ys})
    
#对模型的准确率进行验证
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

print(accuracy.eval({x:mnist.test.images,y_:mnist.test.labels}))

运行结果如下:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值