MNIST是一个非常简单的机器视觉数据集,由几万字28像素*28像素的手写数字组成,只包含灰度信息,我们的任务就是对这些数字图片进行分类。我们采用TensorFlow为我们封装过的一个MNIST。
完整代码如下:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
print(mnist.train.images.shape,mnist.train.labels.shape)
print(mnist.test.images.shape,mnist.test.labels.shape)
print(mnist.validation.images.shape,mnist.validation.labels.shape)
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32,[None,784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W)+b)
#定义loss function描述模型的分类精度
y_ = tf.placeholder(tf.float32,[None,10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),reduction_indices=[1]))
#定义优化算法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
tf.global_variables_initializer().run()
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
train_step.run({x:batch_xs,y_:batch_ys})
#对模型的准确率进行验证
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
print(accuracy.eval({x:mnist.test.images,y_:mnist.test.labels}))
运行结果如下: