线性回归分析统计方法代码

本文通过Python的Statsmodels库展示了如何建立和应用线性回归模型,yi=axi+b+εi,详细介绍了线性回归的统计方法并提供了代码示例。
摘要由CSDN通过智能技术生成

利用第三方库Statsmodels训练假定的线性回归模型,即yi=axi+b+εi

代码如下:

import os
import sys

import numpy as np
import statsmodels.api as sm
from statsmodels.sandbox.regression.predstd import wls_prediction_std
import matplotlib.pyplot as plt
import pandas as pd

def linearModel(data):
    """
    线性回归统计性质分析步骤展示
    
    参数
    ---
    data:DataFrame,建模数据
    """
    features = ["x"]
    labels = ["y"]
    Y = data[labels]
    #加入常量变量,因为在Statsmodels中,线性回归模型是用矩阵的形式表示的。
    X = sm.add_constant(data[features])
    #构建模型
    re = trainModel(X,Y)
    #分析模型效果
    modelSummary(re)
    
def trainModel(X,Y):
    """
    训练模型
    """
    model = sm.OLS(Y,X)
    re = model.fit()
    return re

def modelSummary(re):
    """
    分析线性回归模型的统计性质
    """
    #整体统计分析结果
    print(re.summary())
    #用f test检验x对应的系数a是否显
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值