jupyter无法调用GPU解决办法

当在PyTorch环境中遇到Jupyter笔记本无法调用GPU的问题时,可以按照以下步骤解决:1) 查看已有内核列表;2) 删除旧内核;3) 安装nb_conda_kernels包以创建虚拟环境的内核。安装完成后,测试表明已成功调用CUDA。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


pytorch环境下python文件正常调用GPU,jupyter无法调用GPU

解决方法:

第一步 查看之前的内核位置

jupyter kernelspec list

第二步 删除之前的内核

jupyter kernelspec remove ‘你的内核名称’

我这里是jupyter kernelspec remove python3

第三步 安装nb_conda_kernels包,自动把虚拟环境下的python生成内核

conda install nb_conda_kernels

等待安装完成

测试 成功调用cuda

​​在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值