725 - Division

暴力。。注意清空数组a

#include<cstdio>

#include<cstring>
using namespace std;
int a[20];
int main(){
    int N,L=0;
    while(scanf("%d",&N)!=EOF&&N){
        int maxn=0;
        if(L) printf("\n"); L=1;
        for(int i=0;i<=9;i++)
            for(int j=0;j<=9;j++){
                    if(j==i) continue;
                for(int n=0;n<=9;n++){
                    if(n==j||n==i) continue;
                    for(int m=0;m<=9;m++){
                        if(m==i||m==n||m==j) continue;
            for(int k=0;k<=9;k++){
                if(k==i||k==j||k==n||k==m)  continue;
            int ans,cnt=0;  ans=i*10000+j*1000+n*100+m*10+k;
            int kase=ans*N;
            int t=kase,bbs=1;
            memset(a,0,sizeof(a));
            if(kase<1234||kase>98765)  continue;
            while(t>0){
                int q=t%10;
                a[cnt++]=q; t=t/10;
            }
            for(int z=0;z<5;z++)
                if(a[z]==i||a[z]==j||a[z]==n||a[z]==m||a[z]==k) {bbs=0;break;}
            for(int z=0;z<4;z++)
                for(int x=z+1;x<5;x++)
                    if(a[z]==a[x]) { bbs=0;break; }
            if(bbs==1){
                printf("%d%d%d%d%d / %d%d%d%d%d = %d\n",a[4],a[3],a[2],a[1],a[0],i,j,n,m,k,N); maxn++;
            }
        }
                    }
                }
            }
        if(maxn==0)
            printf("There are no solutions for %d.\n",N);
    }
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值