给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:
2
/ \
1 3
输出: true
示例 2:
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
Python代码实现:
思路:
从上往下比较的,每个节点往左根节点就是最大,往右根节点就是最小值。
在遍历过程中原函数不能够传递最大最小值,又重新定义了一个函数方便传递最大值,最小值.
原函数直接调用这个函数就行。
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def validBST(self,root,small,large):
if root==None:
return True
if small>=root.val or large<=root.val:
return False
return self.validBST(root.left,small,root.val) and self.validBST(root.right,root.val,large)
def isValidBST(self, root):
return self.validBST(root,-2**32,2**32)