数论算法模板

解同余方程(扩中-除数不互质)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn = 1e6 + 100;
ll r[maxn];//余数
ll m[maxn];//除数
ll n;
ll mul(ll a, ll b, ll mod)
{
	ll res = 0ll;
	while (b)
	{
		if (b & 1)res = (res + a) % mod;
		a = (a + a) % mod;
		b >>= 1;
	}
	return res % mod;
}
ll exgcd(ll a, ll b, ll& x, ll& y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	ll d = exgcd(b, a % b, y, x);
	y -= (a / b) * x;
	return d;
}
ll exchina()
{
	ll M = m[1], res = r[1];
	ll a, b, c, d, x, y, t;
	for (ll i = 2; i <= n; i++)
	{
		a = M, b = m[i], c = ((r[i] - res) % m[i] + m[i]) % m[i];
		d = exgcd(a, b, x, y);
		if (c % d)return -1;
		t = b / d;
		//x = x * c / d;
		//x = (x % t + t) % t;
		x = mul(x, c / d, t);
		res += x * M;
		M *= t;
		res = (res % M + M) % M;
	}
	return res;
}
int main()
{
	ios::sync_with_stdio(false);
	cin >> n;
	for (ll i = 1; i <= n; i++)
	{
		cin >> m[i] >> r[i];
	}
	ll ans = exchina();
	cout << ans << endl;
	return 0;
}

解同余方程(中国-除数互质)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn = 1000005ll;
ll pri[maxn];
ll r[maxn];
ll n;
ll exgcd(ll a, ll b, ll& x, ll& y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	ll res = exgcd(b, a % b, y, x);
	y -= (a / b) * x;
	return res;
}
ll china(ll pri[], ll r[], ll n)
{
	ll temp = 1ll;
	ll res = 0ll;
	for (ll i = 0; i < n; i++)
	{
		temp *= pri[i];
	}
	for (ll i = 0; i < n; i++)
	{
		ll m = temp / pri[i];
		ll x, y;
		ll d = exgcd(pri[i], m, x, y);
		res = (res + y * m * r[i]) % temp;
	}
	return (res % temp + temp) % temp;
}
int main()
{
	ios::sync_with_stdio(false);
	cin >> n;
	for (ll i = 0; i < n; i++)
	{
		cin >> pri[i] >> r[i];
	}
	ll ans = china(pri, r, n);
	cout << ans << endl;
	return 0;
}

矩阵快速幂

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll x, y, aa, bb, mod;
string s;
struct M
{
	static const int maxn = 2;
	ll a[2][2];
	M()
	{
		a[0][0] = a[1][1] = 1;
		a[0][1] = a[1][0] = 0;
	}
	M operator * (const M& b) {
		M res;
		res.a[0][0] = (a[0][0] * b.a[0][0] + a[0][1] * b.a[1][0]) % mod;
		res.a[0][1] = (a[0][0] * b.a[0][1] + a[0][1] * b.a[1][1]) % mod;
		res.a[1][0] = (a[1][0] * b.a[0][0] + a[1][1] * b.a[1][0]) % mod;
		res.a[1][1] = (a[1][0] * b.a[0][1] + a[1][1] * b.a[1][1]) % mod;
		return res;
	}
};
M ksm(M A, int k)
{
	if (!k)return M();
	M res;
	while (k)
	{
		if (k & 1)res = res * A;
		A = A * A;
		k >>= 1;
	}
	return res;
}
M ksm(M A, string s)
{
	M res;
	for (int i = s.length() - 1; i >= 0; i--)
	{
		if (s[i] != '0')res = res * ksm(A, s[i] - '0');
		A = ksm(A, 10);
	}
	return res;
}
int main()
{
	ios::sync_with_stdio(false);
	cin >> x >> y >> aa >> bb;
	cin >> s >> mod;
	M A;
	A.a[0][0] = aa;
	A.a[0][1] = bb;
	A.a[1][0] = 1;
	A.a[1][1] = 0;
	A = ksm(A, s);
	ll ans = ((A.a[1][0] * y) % mod + (A.a[1][1] * x) % mod) % mod;
	cout << ans << endl;
	return 0;
}

欧拉筛

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e7 + 7;
bool vis[N];
ll p[N];
ll cnt;
void init()
{
	for (ll i = 2; i <= N; i++)
	{
		if (!vis[i])p[++cnt] = i;
		for (ll j = 1; j <= cnt; j++)
		{
			if (i * p[j] >= N)break;
			vis[i * p[j]] = 1;
			if (!(i % p[j]))break;
		}
	}
}
int main()
{
	ios::sync_with_stdio(false);
	return 0;
}

求逆元(费马小定理)

费马小定理:若 p 是质数,且 gcd(a,p)=1 ,则有 a^(p-1)=1(mod p)
从逆元的定义推导,可得 a*inv(a)=1=a^(p-1) (mod p) ,于是有 inv(a)=a^(p-2)(mod p)。
p为质数!!!
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a, p;
ll ksm(ll x, ll y, ll mod)
{
	ll ans = 1ll;
	while (y)
	{
		if (y & 1)ans = (ans * x) % mod;
		x = (x * x) % mod;
		y >>= 1;
	}return ans % mod;
}
ll inv(ll a, ll p)
{
	return ksm(a, p - 2, p);
}
int main()
{
	ios::sync_with_stdio(false);
	cin >> a >> p;
	cout << inv(a, p) << endl;
	return 0;
}

求逆元(线性递推)

给定n,p,1到n在模p意义下的乘法逆元 n<=3e6
线性递推证明:
设p=aq+r,即q=p/a ,r=p%a
 aq+r=0(mod p)
 a=-r*inv(q) (mod p)
 inv(a)=-q*inv(r) (mod p)
 得线性递推公式 inv(a)=-(p/a)*inv(p%a)
 洛谷P3811
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn = 3e6 + 10;
ll inv[maxn];
ll n, p;
int main()
{
	ios::sync_with_stdio(false);
	cin >> n >> p;
	inv[1] = 1ll;
	for (ll i = 2; i <= n; i++)
	{
		inv[i] = (((ll)(-p / i + p) % p) * inv[p % i]) % p;
	}
	for (ll i = 1; i <= n; i++)cout << inv[i] << endl;
	return 0;
}

求逆元和求特解(扩展欧几里得)

//题目 洛谷P1082
exgcd应用:1.求ax+by=gcd(a,b)的特解(x,y)  2.求ax=1(mod m)的a的逆元x
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
//求方程ax+by=gcd(a,b)的特解,特别的ax+by=1有解当且仅当a,b互质
ll exgcd(ll a, ll b, ll& x, ll& y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	ll d = exgcd(b, a % b, y, x);
	y -= (a / b) * x;
	return d;
}
//求满足ax%m=1(ax+my=1或称ax=1(mod m)),称x为a在模m意义下的逆元,求x
//a和m互质时,才有a的逆元x
ll inv(ll a, ll m)
{
	ll x, y;
	ll d = exgcd(a, m, x, y);
	if (d == 1)return (x + m) % m;
	else return -1;
}
ll a, b;
int main()
{
	ios::sync_with_stdio(false);
	cin >> a >> b;
	cout << inv(a, b) << endl;
	return 0;
}

求排列组合数(求一次)(卢卡斯定理)

//卢卡斯定理求组合数
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n, m, p;
ll ksm(ll a, ll b, ll mod)
{
	ll temp = 1ll;
	while (b)
	{
		if (b & 1)temp = (temp * a) % mod;
		a = (a * a) % mod;
		b >>= 1;
	}return temp % mod;
}
ll fermat_inv(ll x, ll mod)
{
	return ksm(x, mod - 2, mod) % mod;
}
ll C(ll n, ll m)
{
	if (n < m)return 0;
	m = min(m, n - m);
	ll a = 1ll;
	ll b = 1ll;
	for (ll i = 0; i < m; i++)
	{
		a = (a * (n - i)) % p;
		b = (b * (i + 1)) % p;
	}
	return a * fermat_inv(b, p) % p;
}
ll lucas(ll n, ll m)
{
	if (m == 0)return 1;
	return lucas(n / p, m / p) * C(n % p, m % p) % p;
}
int main()
{
	ios::sync_with_stdio(false);
	int t;
	cin >> t;
	while (t--)
	{
		cin >> n >> m >> p;
		cout << lucas(n, m) << endl;
	}
	return 0;
}

求排列组合数(求多次)

//根据题目大意推出表达式,主要是求阶乘逆元的操作
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn = 2e5 + 100;
ll mod = 998244353;
ll fac[maxn];
ll inv[maxn];
ll n, m, k;
ll ans;
void inverse(ll n)
{
	inv[1] = 1;
	for (ll i = 2; i <= n; i++)inv[i] = (mod - mod / i) * inv[mod % i] % mod;
}
void init(ll n)
{
	fac[0] = inv[0] = 1;
	inverse(n);
	for (ll i = 1; i <= n; i++)
	{
		fac[i] = fac[i - 1] * i % mod;
		inv[i] = inv[i - 1] * inv[i] % mod;
	}
}
ll c(ll n, ll m)
{
	return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
ll ksm(ll a, ll b)
{
	ll res = 1ll;
	while (b)
	{
		if (b & 1)res = res * a % mod;
		a = a * a % mod;
		b >>= 1;
	}return res % mod;
}

int main()
{
	ios::sync_with_stdio(false);
	cin >> n >> m >> k;
	init(n);
	ll p = ksm(m - 1, n - 1 - k);
	for (ll i = k; i >= 0; i--)
	{
		ans = (ans + c(n - 1, i) * m % mod * p % mod) % mod;
		p = p * (m - 1) % mod;
	}
	cout << ans << endl;
	return 0;
}

开__int128(排列组合数过大)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

void scan(__int128 &x) { //输入
    x = 0;
    int f = 1;
    char ch;
    if ((ch = getchar()) == '-') f = -f;
    else x = x * 10 + ch - '0';
    while ((ch = getchar()) >= '0' && ch <= '9')
        x = x * 10 + ch - '0';
    x *= f;
}

void _print(__int128 x) {
    if (x > 9) _print(x / 10);
    putchar(x % 10 + '0');
}
void print(__int128 x) { //输出
    if (x < 0) {
        x = -x;
        putchar('-');
    }
    _print(x);
}

__int128 n, k;
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值