以GPU为例细说下AI芯片的软硬协同工作机制:
先说软件部分内核分派
1 编写和编译内核函数
1)编写内核函数
内核函数是运行在GPU上的函数,通常用CUDA或OpenCL编写
2)编译内核函数
使用专用编译器(如NVCC)将内核函数编译为GPU可执行的二进制代码。
2 准备运行时代码
编译后的二进制代码需要在运行时加载到主机程序中。
例如:
extern "C" {
extern __global__ void myKernel(float *d_A);
}
int main() {
float *d_A;
size_t size = 256 * sizeof(float);
// 分配设备内存
cudaMalloc((void**)&d_A, size);
// 内核参数设置
dim3 grid(1);
dim3 block(256);
// 内存复制操作(如有需要)
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
// 启动内核
myKernel<<<grid, block>>>(d_A);
// 设备到主机的内存复制操作
cudaMemcpy(h_A, d_A, size, cudaMemcpyDeviceToHost);
// 释放设备内存
cudaFree(d_A);
return 0;
}
3 形成命令队列
在CUDA中,启动内核时,运行时会形成内核启动命令并将其加入到CUDA流中。主机端运行时将内核启动命令等插入用于存放AQL(Architected Queuing Language)数据包的AQL队列中,AQL数据包含有与内核分派有关信息,如网格、工作组大小、内核函数信息等。
cudaStream_t stream;
cudaStreamCreate(&stream);
myKernel<<<gr