[自动驾驶技术]-5 Tesla自动驾驶方案之算法(AI Day 2021)

有朋友问我,如何有效学习一个新技术。笔者这么多年的经验是:1)了解国内外产业应用和标准法规现状,先建立宏观知识图谱及技术系统框架;2)根据系统框架逐块进行深入研究(横向、纵向),穿插行业内主流厂商对应模块技术方案;3)系统研究行业内TOP厂商完整解决方案;4)针对你选择的重点方向进阶研究。因此笔者建立的自动驾驶专题介绍也会按照这个思路搭建技术体系(发布内容顺序不一定能严格遵守该路线,但会力求不断更新最终能按照该思路完成自动驾驶专栏搭建)。

本文及之后几篇系列文章,旨在针对自动驾驶行业领军企业特斯拉的技术方案进行深入解读和分析(资料来源:特斯拉官网,AI Day 2021,AI Day 2022,Inventor Day 2023)。特斯拉自动驾驶技术的核心是三个点:算法、数据和硬件,以下笔者将分别介绍AI Day 2021,AI Day 2022,Inventor Day 2023三次分享的内容,然后综合梳理出目前特斯拉自动驾驶解决方案。本文主要介绍特斯拉AI Day 2021的算法部分内容。

1 感知算法系统框架

1)系统框架

(摄像头raw data 1280*960,12bit (HDR) @36Hz)

特斯拉的感知算法系统,取名为HydraNet(九头蛇),九头非常形象的表示了感知系统整个算法模型是一个多头任务学习神经网络架构,旨在处理自动驾驶汽车所需的多种感知任务;颈部形象的展示出整个感知模型共享特征提取部分,从而提高计算效率和感知精度。

从上图可以看到,整个算法模型的输入是来自8个摄像头提供的raw data,通过神经网络将图像实时处理转换成4D向量空间(包括自动驾驶所需一切物体的3D表示,再加上时间维度),包括线、边、道路、交通标志、行人、车辆的位置、方向、速度、角速度等。提取到的特征序列进入到特定任务头进行处理,例如使用一阶YOLO进行目标检测等,针对性完成更多任务处理。

2)模型优点

HydraNet使用共同的共享骨干网络Backbone,再分支到多个任务头进行具体的子任务处理,具有非常明显的优势:

  • 特征共享:在测试时,可以通过共享前向传递推理,提高车载系统的效率。
  • 任务解耦:各任务独立进行,互不影响,因此更新某个数据集或更改某个任务头的架构时,无需重新验证所有任务。
  • 瓶颈处理:可以将Multi-scale features特征缓存到磁盘,只需对缓存的特征进行微调即可。

3)各组成模块

3.1)Rectify校准

考虑到不同位置安装的摄像头的抖动等问题,需要对每个输入的视觉数据进行校准,就是Rectify模块的任务,将所有图片转换为虚拟通用摄像头。

3.2

### 关于自动驾驶汽车中的深度学习算法 #### 深度Q学习算法的应用实例 一个简单的自驾车AI Python脚本可以采用深Q学习算法来实现基本的自动行驶功能[^1]。此方法属于强化学习的一种形式,在这种框架下,代理(即车辆)通过与环境互动获得经验并优化行为策略。 ```python import gym from keras.models import Sequential from keras.layers import Dense, Activation, Flatten from rl.agents.dqn import DQNAgent from rl.policy import EpsGreedyQPolicy from rl.memory import SequentialMemory env = gym.make('CarRacing-v0') nb_actions = env.action_space.n model = Sequential() model.add(Flatten(input_shape=(1,) + env.observation_space.shape)) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(nb_actions)) model.add(Activation('linear')) policy = EpsGreedyQPolicy() memory = SequentialMemory(limit=50000, window_length=1) dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, target_model_update=1e-2, policy=policy) dqn.compile(optimizer='adam', metrics=['mae']) history = dqn.fit(env, nb_steps=50000, visualize=False, verbose=2) ``` 这段代码展示了如何构建基于Keras库的DQN模型用于模拟环境中训练自驾车的行为模式。虽然这是一个简化版的例子,但它体现了利用深度学习解决复杂动态系统的思路。 #### HydraNet多任务感知系统 特斯拉开发了一种名为HydraNet的独特感知算法体系结构,该架构采用了多头任务学习神经网络设计,专门针对不同类型的传感输入进行了定制化处理[^5]。“九头”的比喻生动描绘了这一复杂的感知流程——每个分支负责特定的任务如物体检测、车道线跟随等;而“脖子”部分则代表共同的基础特征提取层,这不仅提高了运算效率也增强了整体感知准确性。 #### 核心概念关联性说明 无人驾驶技术依赖于一系列先进的人工智能组件协同工作,其中包括但不限于: - **计算机视觉**:解析摄像头捕捉到的画面信息; - **机器/深度学习**:从大量历史数据集中提炼规律指导实时决策过程; - **定位导航**:确定车辆当前位置以及规划最优路径; - **传感器融合**:综合雷达、激光测距仪等多种设备获取的数据形成全面路况理解。 这些要素相互配合使得车辆能够在无需人类干预的情况下安全有效地完成旅程目标[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值