使用gurobi求解 MIP问题

1。前面我们已经介绍了使用python和gurobi求解器来求解我们的优化问题,那么在使用gurobi求解优化问题的时候,当问题的规模较小的时候,我们的求解器能在短时间内快速的求解。cpu求解的时间很快。但是当问题的规模比较大时,就拿上次的切钢卷问题(CSP)来说,如果当需求I很大的时候,那么gurobi求解是慢,此时一般我们会设定使用gurobi求解的时间:model.setParam(TimeLimit,3600)此时我们的求解器最长的求解时间为1h,当求解器能在规定的时间内求解到最优解时,那么求解器将会直接输出最优解。当求解时间超过设定的最长求解时间时,此时求解器会自动停止求解,此时我们看MIPLOG会发现,求解的GAP不是0,表示问题没有求解到最优,后者说GUROBI不知道当解不是最优解。

2.到达设定求解时间:

        self._model.setParam(GRB.Param.TimeLimit,60.0)
        self._model.setParam(GRB.Param.Threads,8)
        # self._model.setParam(GRB.Param.DisplayInterval,10)
        start_time = time.time()
        self._model.optimize()
        end_time = time.time()

MIPLOG:

 从输出的日志中我们可以看到,求解器被设定的求解时间中断了求解过程。

在上述代码中我们可以看到,我们设定了求解时间为60s,并且设定了求解器使用的线程数为8,本人电脑为4核8线程。一般我们都会设定求解器的求解线程数量。我们还设定了求解器初始打印结果的step,本次我们使用默认step=5.

满线程:

 只开一个线程:

 使用一半的线程:

 当然我们也可以不设定求解器的线程数,gurobi会根据我们内存的使用情况来自动使用使用的线程数。

好了今天就学习到这里,我们明天再学吧。。。。。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Gurobi 是一种商业化的数学优化软件,它提供了很多优化求解的功能,包括线性规划、整数规划、混合整数规划等。对于多车辆路径规划(MDVRP)问题,可以使用Gurobi进行求解。 要使用Gurobi求解MDVRP问题,需要将其转化为一个数学优化模型。可以使用线性规划或混合整数规划等方法进行建模。其中,线性规划适用于不含约束条件的MDVRP问题,而混合整数规划适用于含有约束条件的MDVRP问题。 具体地,可以使用GurobiPython接口进行建模和求解。首先,需要定义变量、目标函数和约束条件。然后,将其传递给Gurobi进行求解。最后,可以获取最优解和最优值。 以下是一个简单的MDVRP问题Gurobi建模示例: ```python import gurobipy as gp # Define the model model = gp.Model("mdvrp") # Define variables x = model.addVars(customers, vehicles, vtype=GRB.BINARY, name="x") # Define objective function obj = quicksum(distance[i,j]*x[i,j,k] for i in range(customers) for j in range(customers) for k in range(vehicles)) model.setObjective(obj, GRB.MINIMIZE) # Define constraints model.addConstrs(quicksum(x[i,j,k] for j in range(customers)) == 1 for i in range(customers) for k in range(vehicles)) model.addConstrs(quicksum(x[i,j,k] for i in range(customers)) == 1 for j in range(customers) for k in range(vehicles)) model.addConstrs(quicksum(demand[i]*x[i,j,k] for i in range(customers)) <= capacity[k] for j in range(customers) for k in range(vehicles)) model.addConstrs(quicksum(x[i,j,k] for k in range(vehicles)) <= 1 for i in range(customers) for j in range(customers)) # Solve the model model.optimize() # Print the solution for k in range(vehicles): print("Vehicle", k, ":", end=" ") for i in range(customers): for j in range(customers): if x[i,j,k].x > 0.5: print(i, "->", j, end=" ") print() ``` 其中,`customers`表示客户数量,`vehicles`表示车辆数量,`distance`表示客户之间的距离,`demand`表示客户的需求量,`capacity`表示车辆的容量限制。`x`表示二元变量,表示第k辆车是否从i点到达j点。 需要注意的是,在实际应用中,MDVRP问题通常比上述示例更为复杂,需要根据具体情况进行建模和求解

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值