启发式算法学习
一只躺在风口的�
这个作者很懒,什么都没留下…
展开
-
PSO粒子群搜索算法步骤及应用实例(一)
案例一:利用PSO求解无约束连续函数优化问题代码:PSO_1.py'''#案例一:# 求解Rastrigin函数的极小值,自变量取值范围为[-5,5]# 函数:fun = 2*a+x**2-a*np.cos(2*np.pi*x) + y**2-a*np.cos(2*np.pi*y)'''import numpy as npimport matplotlib.pyplot as pltimport matplotlib as mpl# 绘制三维图像和色图from matplotl.原创 2020-12-05 13:00:40 · 2480 阅读 · 0 评论 -
捕食搜索算法(PS)-求解TSP问题
捕食搜索算法(PS)PS算法是一种用于解决组合优化问题的模拟动物模拟动物捕食行为的空间搜索策略。算法背景简介【1】在没有发现猎物和猎物痕迹时,在整个空间内沿一定的方向快速的寻找猎物;【2】一旦发现猎物或者发现猎物痕迹,捕猎者立即改变自己的运动方式,减慢速度,在该附近区域进行集中搜索,持续不断的接近猎物。【3】在搜寻一段时间没有找到猎物后,捕猎者将放弃这种集中的区域,而继续在整个空间寻找猎物,即所谓的区域限制的搜索策略。!!!隐含应用:猎物在搜索空间内是聚集的,若为随机分布则算法可能失效算法优势原创 2020-10-14 11:37:23 · 1643 阅读 · 0 评论 -
用模拟退火(SA)算法解决旅行商问题
问题描述算法简介模拟退火算法:是基于Monte-Carlo迭代求解策略的一种随机寻优算法。从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。核心(概率设置机制):模拟退火算法以一定的概率来接受一个比当前解要差的解概率的计算:对比:普通贪心算法:兔子朝着比现在低的地方跳去。它找到了不远处的最低的山谷。但是这座山谷不一定最低的。模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向低处,原创 2020-10-07 10:39:44 · 3440 阅读 · 4 评论