多项式求逆

A A A为原多项式,所求为多项式 B B B

即有 A × B ≡ 1 m o d    x n A \times B \equiv 1 \mod x^n A×B1modxn

A × B ′ ≡ 1 m o d    x n 2 A \times B' \equiv 1 \mod x^{\frac n 2} A×B1modx2n

A × ( B − B ′ ) ≡ 0 m o d    x n 2 A \times (B - B') \equiv 0 \mod x^{\frac n 2} A×(BB)0modx2n

B − B ′ ≡ 0 m o d    x n 2 B - B' \equiv 0 \mod x^{\frac n 2} BB0modx2n

( B − B ′ ) 2 ≡ 0 m o d    x n (B - B')^2 \equiv 0 \mod x ^n (BB)20modxn

B 2 − 2 B B ′ + B ′ 2 ≡ 0 m o d    x n B^2 - 2BB' + B'^2 \equiv 0 \mod x ^n B22BB+B20modxn

A ( B 2 − 2 B B ′ + B ′ 2 ) ≡ 0 m o d    x n A(B^2 - 2BB' + B'^2) \equiv 0 \mod x^n A(B22BB+B2)0modxn

B − 2 B ′ + A B ′ 2 ≡ 0 m o d    x n B - 2B' + AB'^2 \equiv 0 \mod x^n B2B+AB20modxn

B ≡ 2 B ′ − A B ′ 2 m o d    x n B \equiv 2B' - AB'^2 \mod x^n B2BAB2modxn

倍增求解即可。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll ;
inline int read() {
    int x = 0, f = 1; char c; c = getchar() ;
    while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
    while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar() ;
    return x * f ;
}
const int maxn = 262150, mod = 998244353, g = 3 ;
int ginv ;
int a[maxn], b[maxn], A[maxn], B[2][maxn];
inline ll power (ll x, int y) {
    ll res = 1 ;
    while (y) {
        if (y & 1) res = res * x % mod ;
        x = x * x % mod; y >>= 1 ;
    }
    return res ;
}
inline void ntt (int a[], int n, int f) {
    for (int i = 0, j = 0; i < n; i ++) {
        if (i > j) swap (a[i], a[j]) ;
        for (int t = n >> 1; (j ^= t) < t; t >>= 1) ;
    }
    for (int i = 2; i <= n; i <<= 1) {
        int wn = power (f ? ginv : g, (mod - 1) / i) ;
        for (int j = 0; j < n; j += i) {
            int w = 1 ;
            for (int k = 0; k < (i >> 1); k ++, w = 1ll * w * wn % mod) {
                ll A = a[j + k], B = 1ll * w * a[j + k + (i >> 1)] % mod ;
                a[j + k] = (A + B) % mod; a[j + k + (i >> 1)] = (A - B + mod) % mod ;
            }
        }
    }
    if (f) {
        ll invn = power (n, mod - 2) ;
        for (int i = 0; i < n; i ++) a[i] = a[i] * invn % mod ;
    }
}
inline void mul (int A[], int B[], int n) {
    memset (a, 0, sizeof a) ;
    memset (b, 0, sizeof b) ;
    for (int i = 0; i < n / 2; i ++)
        a[i] = A[i], b[i] = B[i] ;
    ntt (a, n, 0); ntt (b, n, 0) ;
    for (int i = 0; i < n; i ++) a[i] = 1ll * a[i] * b[i] % mod ;
    ntt (a, n, 1) ;
    for (int i = 0; i < n; i ++) A[i] = a[i] ;
}
inline void inv (int A[], int n) {
    int cur = 0, bas = 1, lim = 2 ;
    B[cur][0] = power (A[0], mod - 2) ;
    while (bas <= (n << 1)) {
        cur ^= 1 ;
        memset (B[cur], 0, sizeof B[cur]) ;
        for (int i = 0; i < bas; i ++)
            B[cur][i] = 1ll * 2 * B[cur ^ 1][i] % mod ;
        mul (B[cur ^ 1], B[cur ^ 1], lim) ;
        mul (B[cur ^ 1], A, lim) ;
        for (int i = 0; i < bas; i ++)
            B[cur][i] = (B[cur][i] - B[cur ^ 1][i] + mod) % mod ;
        bas <<= 1; lim <<= 1 ;
    }
    for (int i = 0; i <= n; i ++) A[i] = B[cur][i] ;
}
int main() {
    ginv = power (g, mod - 2) ;
    int n = read() - 1 ;
    for (int i = 0; i <= n; i ++) A[i] = read() ;
    inv (A, n) ;
    for (int i = 0; i <= n; i ++) printf("%d ", A[i]) ;
    printf("\n") ;
    return 0 ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值