多项式除法

AAnn次多项式,考虑AR(x)=xnA(1x)A_R(x) = x^n A(\frac 1 x)

AR[i]=A[ni]A_R[i] = A[n - i]

F(x)=Q(x)G(x)+R(x)F(x) = Q(x) * G(x) + R(x)

F(1x)=Q(1x)G(1x)+R(1x)F(\frac 1 x) = Q(\frac 1 x) * G(\frac 1 x) + R(\frac 1 x)

xnF(1x)=xnmQ(1x)xmG(1x)+xnm+1xm1R(1x)x^n F(\frac 1 x) = x^{n-m}Q(\frac 1 x) * x^m G(\frac 1 x) + x^{n-m+1} x^{m-1} R(\frac 1 x)

FR(x)=QR(x)GR(x)+xnm+1RR(x)F_R(x) = Q_R(x) * G_R(x) + x^{n-m+1}R_R(x)

FR(x)QR(x)GR(x)mod  xnm+1F_R(x) \equiv Q_R(x) * G_R(x) \mod x^{n-m+1}

QR(x)FR(x)GR1(x)mod  xnm+1Q_R(x) \equiv F_R(x) * G_R^{-1} (x) \mod x^{n-m+1}

求出GRG_R的逆,然后求出QRQ_R,再根据R(x)=F(x)Q(x)G(x)R(x) = F(x) - Q(x) * G(x)求出R(x)R(x)即可。

#include <bits/stdc++.h>
using namespace std;
inline int read() {
    int x = 0, f = 1; char c; c = getchar() ;
    while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
    while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar() ;
    return x * f ;
}
typedef long long ll ;
const int maxn = 1e6 + 10, mod = 998244353, g = 3;
int n, m, ginv, len ;
int a[maxn], b[maxn], F[maxn], G[maxn], Gr[maxn], Q[maxn], B[2][maxn] ;
ll power (ll x, int y) {
    ll res = 1 ;
    while (y) {
        if (y & 1) res = res * x % mod ;
        x = x * x % mod; y >>= 1 ;
    }
    return res ;
}
void ntt (int a[], int n, int f) {
    for (int i = 0, j = 0; i < n; i ++) {
        if (i > j) swap (a[i], a[j]) ;
        for (int t = n >> 1; (j ^= t) < t; t >>= 1) ;
    }
    for (int i = 2; i <= n; i <<= 1) {
        int wn = power (f ? ginv : g, (mod - 1) / i) ;
        for (int j = 0; j < n; j += i)
            for (int k = 0, w = 1; k < (i >> 1); k ++, w = 1ll * w * wn % mod) {
                int A = a[j + k], B = 1ll * w * a[j + k + (i >> 1)] % mod ;
                a[j + k] = (A + B) % mod; a[j + k + (i >> 1)] = (A - B + mod) % mod ;
            }
    }
    if (f) {
        int invn = power (n, mod - 2) ;
        for (int i = 0; i < n; i ++) a[i] = 1ll * a[i] * invn % mod ;
    }
}
void mul (int A[], int B[], int n) {
    memset (a, 0, sizeof a) ;
    memset (b, 0, sizeof b) ;
    for (int i = 0; i < n / 2; i ++)
        a[i] = A[i], b[i] = B[i] ;
    ntt (a, n, 0); ntt (b, n, 0) ;
    for (int i = 0; i < n; i ++) a[i] = 1ll * a[i] * b[i] % mod ;
    ntt (a, n, 1) ;
    for (int i = 0; i < n; i ++) A[i] = a[i] ;
}
void inv (int A[], int n) {
    int cur = 0; len = 2 ;
    B[cur][0] = power (A[0], mod - 2) ;
    while (len <= (n << 1)) {
        cur ^= 1; len <<= 1 ;
        memset (B[cur], 0, sizeof B[cur]) ;
        for (int i = 0; i <= len; i ++) B[cur][i] = 1ll * 2 * B[cur ^ 1][i] % mod ;
        mul (B[cur ^ 1], B[cur ^ 1], len) ;
        mul (B[cur ^ 1], A, len) ;
        for (int i = 0; i <= len; i ++)
            B[cur][i] = (B[cur][i] - B[cur ^ 1][i] + mod) % mod ;
    }
    for (int i = 0; i < len; i ++) A[i] = B[cur][i] ;
}
int main() {
    //freopen("1.in", "r", stdin) ;
    //freopen("1.out", "w", stdout) ;
    ginv = power (g, mod - 2) ;
    n = read(); m = read() ;
    for (int i = 0; i <= n; i ++) F[i] = read(), Q[n - i] = F[i] ;
    for (int i = 0; i <= m; i ++) G[i] = read(), Gr[m - i] = G[i] ;
    for (int i = n - m + 2; i <= m; i ++) Gr[i] = 0 ;
    inv (Gr, n - m + 1) ;
    mul (Q, Gr, len) ;
    reverse (Q, Q + n - m + 1) ;
    for (int i = 0; i < n - m + 1; i ++) printf("%d ", Q[i]) ;
    printf("\n") ;
    for (int i = n - m + 1; i <= n; i ++) Q[i] = 0 ;
    while (len <= (n << 2)) len <<= 1 ;
    mul (Q, G, len) ;
    for (int i = 0; i < m; i ++) printf("%d ", (F[i] - Q[i] + mod) % mod) ;
    printf("\n") ;
    return 0 ;
}
发布了43 篇原创文章 · 获赞 4 · 访问量 2743
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览