问题分析
遍历组合确定唯一的二叉树,必须包含中序遍历
前序遍历和中序遍历重建二叉树,
前序遍历:根->左->右,中序遍历:左->根->右
可以看出二叉树前序遍历序列中,第一个元素总是树的根节点的值。中序遍历序列中,左子树的节点的值位于根节点的值的左边,右子树的节点的值位于根节点的右边。
思路:递归处理
(1)取前序遍历中的节点,在中序遍历中找到对应的值,划分为左右子树
(2) 构建根节点的左右子树。
//闭区间
TreeNode* Core(vector<int> pre,int startpre,int endpre,vector<int> vin,int startvin,int endvin)
{
if(startpre > endpre || startvin > endvin)
return NULL;
//创建根节点
TreeNode *pRoot = new TreeNode(pre[startpre]);
//在中序遍历中找到根的位置
int i = startvin;
for(;i <= endvin;++i)
{
if(vin[i] == pRoot->val)
{
//左子树,
pRoot->left = Core(pre,startpre+1,startpre + i - startvin,vin,startvin,i-1);
//右子树
pRoot->right = Core(pre,startpre+i-startvin +1,endpre,vin,i+1,endvin);
}
}
//没有找到
if(i > endvin)
return NULL;
return pRoot;
}
TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
if(pre.size() != vin.size() || pre.size() == 0 || vin.size() == 0)
return NULL;
return Core(pre,0,pre.size()-1,vin,0,vin.size()-1);
}