- 博客(27)
- 资源 (15)
- 收藏
- 关注
原创 行人重识别(四)论文笔记 Visible Thermal Person Re-Identification via Dual-Constrained Top-Ranking
论文链接 IJCAI 2018–Visible thermal person reidentification via dual-constrained top-ranking代码链接Cross-Modal-Re-ID-baseline以下内容并非完整翻译!0. 引言现存的跨模态行人重识别关注于共享特征表示来解决跨模态的变化,然而除了由于相机模式造成的模态变化,还有同一模态下由于相机视角以及行人姿态造成的变化,本论文提出了一种双路网络,再使用一种双向限制的排序损失来同时学习可分辨的特征表示。主要有
2020-11-07 16:19:15 390 3
原创 行人重识别(三) 论文笔记 RGB-Infrared Cross-Modality Person Re-Identification
论文链接 RGB-Infrared Cross-Modality Person Re-Identification代码链接rgb_IR_personreid以下内容并非完整翻译!1. 引言现阶段大部分工作都关注基于RGB图像的Re-ID,然而在很多应用场景中RGB是无法满足监控需要的,例如黑暗环境,因此红外图像(Infrared image)就很有必要了,而红外图像与RGB图像之间存在着较大差异,因此,基于RGB图像的Re-ID任务在这方面就存在局限性,本篇论文就是为了促进跨模态(IR-RGB)的
2020-10-31 12:29:24 825
原创 行人重识别(二)跨模态的行人重识别
感谢前辈总结的论文列表,为了方便自己以后翻阅,链接搁这儿1. 背景在我们现实生活中,可见光条件下的摄像机拍到的图像,往往会包含行人的大部分外观信息,然而现实中并不只需要在可视条件极佳的条件下进行监控,在夜晚或者可视条件极差的场景中也有监控的需要,这个时候,红外相机拍摄的图像便可用于行人的再识别。据我所知,现阶段大部分ReID工作都聚焦在RGB图像这种单一模态上,而基于RGB-IR的跨模态ReID工作还没有充分引起大家的关注,虽然这方面也有一些比较有创新性的文献,但是或许碍于数据集不够丰富,或者其他什么
2020-10-23 21:50:09 2757
原创 行人重识别(一)
行人重识别-完整系统1.系统结构大虚线框代表一个完整的机场行人重识别系统所要完成的全部内容,包括行人检测+行人重识别;小虚线框代表学术界研究行人重识别时涉及的主要内容,包括特征提取+相似性度量。(该内容参考上一篇博客行人重识别(零))下图即为系统实现的整体流程。2.应用(1)刑事侦查(短时)辅助手段(2)行人理解(3)行人跟踪3.数据集构成(1)数据集通常是通过人工标注或者检测算法得到的行人图片,目前与检测独立,注重识别(2)数据集分为训练集、验证集、query、gallery
2020-09-19 17:23:21 577
原创 行人重识别(零)
行人重识别(ReID)快开题了,挺迷茫的,准备开始用blog记录一下自己的学习过程,为开题做准备,接下来每隔一段时间会更新一篇,内容或多或少,也是给自己点压力!0. 什么是行人重识别行人重识别的是属于计算机视觉下的重要的也是当前比较困难的任务。它主要解决的问题是如何在不同的摄像头下找到同一个人,这种问题其实可以看做是一个图像检索的问题,即通过一张行人在一个摄像头下的图像(或视频)作为检索目标,在其余摄像头中找到与之最相似的行人。1. 为什么要重识别在监控视频中,由于相机分辨率和拍摄角度的缘故,通
2020-09-13 19:09:29 1312
原创 win10中部署个人邮件服务器hMailServer
本文介绍了windows下安装hmailserver部署邮件服务器的过程,随后使用foxmail邮件客户端进行收发信验证,受众是所有想要在内网搭建个人邮件服务器的同学
2023-06-14 10:16:48 1732
原创 python 画激活函数(8种)
直接看代码#import pandas as pd#from scipy import statsimport mathimport matplotlib.pyplot as pltimport numpy as npx = np.linspace(-10,10)##### 绘制sigmoid图像fig = plt.figure(figsize=(10,5))y_sigmoid = 1/(1+np.exp(-x))ax = fig.add_subplot(241)ax.plot(x.
2022-03-07 17:02:44 5110 2
原创 Yolov5 4.0版 网络结构图
前段时间下载的yolov5代码,本人最近想要学习一下,发现网上博主江大白的网络结构图和我下载的程序不太匹配,因此模仿大佬的结构 重新画了一个yolov5s的4.0版本的网络结构图。如果图式内容有问题还请各位不吝指教。原图:yolov5s 4.0修改版:...
2021-12-30 15:44:24 1416 2
原创 Ubuntu16.04 安装paddlepaddle-gpu-2.1.0.post112
最近在研究Paddlepaddle这个深度学习开源框架,发现安装就是个问题,显卡、CUDA版本适配不同版本的paddlepaddle,安装过程中遇到一个问题,在这里做个记录。CUDA11.2 安装paddlepaddle-gpu安装版本不对会报错ModuleNotFoundError: No module named 'paddle.io'使用下边这个安装指令就好啦python -m pip install paddlepaddle-gpu==2.1.0.post112 -f https://pad
2021-06-29 13:36:48 1400
原创 torch 测试GPU能否正常使用
运行程序import torchflag = torch.cuda.is_available()print(flag)ngpu= 1# Decide which device we want to run ondevice = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")print(device)print(torch.cuda.get_device_name(0))pri
2021-03-09 13:16:32 6107 7
原创 (解决方案)使用随机擦除后报错AttributeError: ‘NoneType’object has no attribute ‘shape’
问题描述: 最近我想要在图像数据增强阶段加入随机擦除transforms.RandomErasing()加入后发现一直报错AttributeError: ‘NoneType’ object has no attribute ‘shape’,查了很多都是在说opencv巴拉巴拉的问题,没有与我类似的问题,因此把解决方案记录下来。其实问题很简单,我之前一直是把transforms.RandomErasing()加在随机水平翻转transforms.RandomHorizontalFlip()等方法前后,经
2020-11-13 16:33:06 805 1
原创 SYSU_MM01数据评估 (python版本)
该代码是在python中实现SYSU_MM01数据集的评估代码,是SYSU-MM01数据集作者提供的Matlab代码的python翻译。1. SYSU_MM01数据集简介SYSU_MM01数据集共包含七个文件夹, 其中cam1,cam2,cam4,cam5均为RGB图像,cam3和cam6为IR(Infrared)图像下图每两列为同一个id...
2020-10-05 11:14:59 5061 6
原创 ResNet在ImageNet上的预训练模型下载地址
下载地址: 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'h
2020-09-21 17:15:34 4138
原创 【解决方案】Centos6.10升级gcc4.4.7至gcc5.1.0
1.系统配置2.下载gcc安装包想必大家都尝试过用yumtar xvf gcc-5.1.0.tar.bz2 -C /usr/local/src安装gcc需要下载诸如gmp、mpfr、mpc等依赖文件,执行download_prerequisites将会自动下载这些软件并解压到当前目录...
2020-09-10 19:51:32 511
原创 python中使用socket进行图像传输
在python中使用socket进行linux服务器与win10主机间的图像传输前提是:服务器与主机需要在同一局域网内1.服务器端(我的是Linux服务器)# 服务器端server.pyimport socketimport osimport sysimport structdef socket_service_image(): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
2020-09-07 20:32:52 2987 2
原创 win10安装docker
docker推出可以运行在win10上的稳定版本,下面是针对win10安装并使用docker详细步骤1.下载docker点击进入docker官网,下载稳定版docker安装包2.安装准备设备必须是64bit的Windows10,并开启Hyper-V。开启Huper-V步骤为:控制面板-> 程序->程序与功能->启用或关闭Windows功能->选中Hyper-V->确定->重启主机3.开始安装双击运行下载好的docker安装包即可,安装完成后重启主机
2020-08-23 00:04:44 322
原创 Pytorch-YOLOV4-火焰目标检测
首先感谢大佬提供的代码bubbliiiing0.效果展示 1.所需环境torch==1.2.02.注意事项代码中的yolo4_weights.pth是基于608x608的图片训练的,代码中的默认anchors是基于608x608的图片的。注意不要使用中文标签,文件夹中不要有空格!在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件。3.小技巧的设置在train.py文件下:1、mosaic参
2020-08-06 16:08:49 5804 49
原创 Tensorflow训练模型默认占满所有GPU---解决方案
在使用gpu服务器训练tensorflow模型时,总是占满显存!TensorFlow默认的是占用所有GPU因此我们需要手动设置使用的GPU编号以及单个GPU显存占用比例1.第一步需要在代码中开头加入import osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # 将设备中所有GPU按照os.environ["CUDA_VISIBLE_DEVICES"]=‘0’ # 使用0号gpu(想使用其他编号GPU,对应修改引号中的内容即可)os.env
2020-08-06 10:01:33 3302
原创 解决问题ImportError: /usr/lib/x86_64-linux-gnu/libstdc++.so.6: version `CXXABI_1.3.11‘ not found
ImportError: /usr/lib/x86_64-linux-gnu/libstdc++.so.6: version `CXXABI_1.3.11' not found
2020-07-24 17:36:12 12140 15
原创 使用EfficientNet 训练火焰图像二分类器
在整个过程中,非常感谢这位大佬乱觉先森的不吝分享,让我能够快速实现火焰图像分类功能,在这里我做个记录。EfficientNet论文链接 EfficientNet: Rethinking Model Scaling for Convolutional Neural Networkspytorch版本的代码地址 EfficientNet-Pytorch主要使用的是该代码中EfficientNet-Pytorch文件夹下的这三个文件:__init-_.py,model.py,utils.py,存放在自己的
2020-07-22 16:23:51 2341 7
原创 FileNotFoundError: [Errno 2] No such file or directory:‘image.jpg’
使用自己的主机上远程连接服务器运行下面这段程序时,from PIL import Imagefile_dir = ‘/我的路径/...’for file in os.listdir(file_dir): # 遍历file_dir文件夹 img = Image.open(file)报错FileNotFoundError: [Errno 2] No such file or directory:‘image.jpg’,这个问题困扰了我很久,所以特意把犯过的错积累下来,避免之后再犯同样的错误。解决
2020-07-21 13:56:27 9105 2
原创 ValueError: Unknown layer:Merge
在训练好一个模型之后,使用keras导入模型时报错ValueError: Unknown layer:Merge。以下方法亲测可用:这是由于版本问题导致的,需要确保使用该模型进行测试时使用的keras版本与训练该模型时使用的keras的版本相同即可。本人是将keras2.2.5卸载,重新安装keras2.1.5...
2020-07-17 13:29:24 870
原创 win10+GTX1050+CUDA9.0+cudnn7.6
Windows10安装cuda9.0和cudnn9.6你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式
2020-06-29 16:33:37 2409 6
json对比小工具 浅绿色背景代表仅在第一个json中 浅蓝色背景代表仅在第二个json中
2024-07-16
基于python+django+sqlite的书店商城
2024-03-15
基于python+pyqt+opencv+sqlite的人脸识别课堂签到系统
2024-03-15
基于python+django+sqlite的实验室预约系统
2024-03-15
windows下使用python获取永久路由表中的信息
2023-06-13
selenium带验证码的登录接口测试
2023-06-13
NVIDIA-Linux-x86_64-450.57.run
2020-07-28
eff_weights.rar
2020-07-22
INRIAPerson.tar
2020-07-20
451.48-desktop-win10-64bit-international-dch-whql.exe
2020-06-29
ECCV2018 超分辨相关.7z
2020-05-11
ECCV2018 目标检测算法总览.7z
2020-05-11
small-object-master.7z
2020-05-11
static.zip
2020-03-09
tnt-master.zip
2020-03-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人