问题
春节产品设计了一个集卡活动,有45张卡片,共有53次抽卡机会,问我集齐卡片的概率是多大?集齐卡片的抽卡次数期望是多少?
解答
一般性的,设卡片有m张,抽取机会有n次,那么n次集齐的概率
P(n,m)=m!⋅S(n,m)mn=∑mi=0(−1)i⋅Cim(m−i)nmn
其中 S(n,m) 是第二类斯特林数(见后文)。将n次选择看做n个小球,m张卡片看做m个不同盒子,则有 m!⋅S(n,m) 种方案使得每个盒子不为空。
如果将n=53,m=45带入计算,可以算出 P(53,45)=1.43×10−12 ,也就是说全世界人都来参加活动也不太可能出现集齐卡片的人集齐所有m卡片的期望抽卡次数
Em=m⋅∑i=1m1i=m⋅Hm
这个问题叫coupon collector problem,令 Ti 表示收集到了 i−1 种卡片之后收集到第 i 种消息所需要的次数,Ti 满足 pi=m−i