卡片收集问题

这篇博客探讨了一个春节集卡活动的问题,分析了在45张卡片和53次抽卡机会下集齐卡片的概率(约为1.43×10^-12)和期望抽卡次数。博主利用第二类斯特林数和容斥原理进行计算,并提供了MATLAB代码进行验证和模拟结果展示。
摘要由CSDN通过智能技术生成

问题

春节产品设计了一个集卡活动,有45张卡片,共有53次抽卡机会,问我集齐卡片的概率是多大?集齐卡片的抽卡次数期望是多少?

解答

  • 一般性的,设卡片有m张,抽取机会有n次,那么n次集齐的概率

    P(n,m)=m!S(n,m)mn=mi=0(1)iCim(mi)nmn

    其中 S(n,m) 是第二类斯特林数(见后文)。将n次选择看做n个小球,m张卡片看做m个不同盒子,则有 m!S(n,m) 种方案使得每个盒子不为空。
    如果将n=53,m=45带入计算,可以算出 P(53,45)=1.43×1012 ,也就是说全世界人都来参加活动也不太可能出现集齐卡片的人

  • 集齐所有m卡片的期望抽卡次数

    Em=mi=1m1i=mHm

    这个问题叫coupon collector problem,令 Ti 表示收集到了 i1 种卡片之后收集到第 i 种消息所需要的次数, Ti 满足 pi=mi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值