重采样的例子

当需要将时间序列数据从一个频率转换为另一个频率时,可以使用重采样技术。下面是一个示例,演示如何将每日的股票价格数据重采样为每周的平均价格数据:

import pandas as pd

# 创建示例数据
data = {
    'date': pd.date_range(start='2023-01-01', periods=30, freq='D'),
    'price': [100, 110, 105, 120, 115, 130, 125, 140, 135, 150, 145, 160, 155,
              170, 165, 180, 175, 190, 185, 200, 195, 210, 205, 220, 215, 230,
              225, 240, 235, 250]
}
df = pd.DataFrame(data)

# 将日期列设置为索引
df.set_index('date', inplace=True)

# 将每日数据重采样为每周数据,计算平均价格
weekly_data = df.resample('W').mean()

# 打印结果
print(weekly_data)


结果:
 

                 price
date                  
2023-01-01  100.000000
2023-01-08  120.714286
2023-01-15  154.285714
2023-01-22  190.714286
2023-01-29  224.285714
2023-02-05  250.000000

对应的excel:

在重采样的例子中,2023-01-012023-02-05 的值不是平均值,而是原始数据在该时间点的值。

当使用 resample() 方法进行重采样时,默认情况下,Pandas 会将重采样后的数据对齐到重采样周期的起始点。这意味着重采样结果的索引将是重采样周期的起始日期。

在您提供的数据中,重采样的频率是每周 ('W'),因此重采样结果的索引将是每周的起始日期。在这个例子中,2023-01-01 是第一个周的起始日期,而 2023-02-05 是最后一个周的起始日期。

这就是为什么 2023-01-012023-02-05 的值与其他日期的值不同。它们是原始数据在对应周起始日期的值,而不是该周的平均值。

对于其他日期,它们是计算该周内所有数据的平均值得到的。

非常抱歉之前给您带来的混淆,感谢您的指正。请知悉 2023-01-012023-02-05 的值是原始数据在对应周起始日期的值,而其他日期的值是该周内数据的平均值。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值