- 博客(338)
- 资源 (17)
- 收藏
- 关注

原创 浏览器收藏
若依常见问题http://doc.ruoyi.vip/ruoyi-vue/other/faq.html#%E5%A6%82%E4%BD%95%E6%96%B0%E5%A2%9E%E7%B3%BB%E7%BB%9F%E5%9B%BE%E6%A0%87我的在线图形工具https://www.processon.com/diagrams购买的甘特图教程https://edu.csdn.net/course/play/10620/237637甘特图本地项目展示页面htt...
2021-03-31 10:52:11
117
原创 训练于评估流程
主程序通过调用启动整个训练与评估流程。调用,处理每个特征组合。依次调用和,然后对每个模型进行训练和评估。和分别负责模型的训练和评估,确保整个流程模块化、清晰且易于维护。通过这种模块化的设计,你可以更方便地管理和扩展各个功能,同时提高代码的可读性和可维护性。
2024-10-06 16:56:01
435
原创 代码改进
在 `train_and_evaluate_torch` 函数中,你的 `evaluation_results` 是一个列表,每次评估后都会往里面添加结果,但随后你又将其转存到 `loss_records` 并保存为 JSON 文件。可以考虑在捕获异常并记录错误时,直接在 `finally` 块中保存已完成的 `loss_records`,以避免数据丢失。这些改进建议旨在提高你的代码在训练和评估过程中对资源的有效利用,并增强异常处理的健壮性,减少潜在的数据丢失问题。### 1. 更新记录逻辑的改进。
2024-08-31 17:47:23
330
原创 特征工程和训练评估流程
程序的思路: 从配置文件中获取到待组合的特征,进行特征工程返回相应的特征和数据,这个过程中,保留中间特征工程结果,为了避免重复执行。分批遍历所有的特征组合,进行训练和评估,然后保存评估结果。然后读取所有评估结果得到最佳。| 4. 执行特征工程并保存结果 || 5. 遍历特征组合执行训练与评估 || 6. 过滤已评估的特征组合 || 7. 保存评估结果与选择最佳 || 3. 检查已保存的特征工程结果 || 1. 读取配置文件 || 2. 提取特征组合 |
2024-08-23 00:00:30
264
原创 分批处理特征组合和特征数据
`[current_normalized_data[current_batch.index(features)]]` 的作用是从当前批次的数据列表中提取与当前特征组合 `features` 相对应的数据,并将其包装成一个列表形式。- 这在你调用训练函数 `train_and_evaluate_torch` 时确保传递的参数符合函数的预期格式。这个方法主要是在处理每个批次时,将每个特征组合与对应的数据正确配对,并传递给模型进行训练。
2024-08-21 11:34:53
904
1
原创 分批次训练和评估神经网络模型
训练神经网络模型的时候,特征组合太多,电脑的资源会不足,所以采用分批逐步进行。已经处理过的批次保存下来,在下一次跳过,只做新加入的批次训练。选择最优模型组合在中间结果的范围内选择,这样能保证所有的特征都能得到组合,所有的组合都能得到训练和评估。
2024-06-15 16:55:10
366
原创 机器学习 项目结构
我的项目文件夹下有许多文件,我想把我的项目单独放到一个文件夹,我的封装的模块放到一个一个文件夹方便管理,我该怎么做,这样做之后,主程序调用子模块需要在接口函数中调整路径吧。将项目单独放到一个文件夹并将封装的模块放到另一个文件夹是一种很好的组织方式,可以提高代码的可维护性。在主程序中调用子模块时,确保相对导入的正确性。在每个子模块的接口函数中,使用相对导入方式导入其他模块。这样,在主程序中使用相对导入,无论您的项目文件夹结构如何变化,都不需要调整路径。在实际项目中,这些建议可能需要根据您的具体情况进行调整。
2023-12-19 10:38:27
602
原创 机器学习 项目结构 数据预测 实验报告
我经过处理得到了测试值,然后进一步得到预测和真实值的比较,然后再把之前的所有相关的参数、评估指标、预测值、比较结果都存入excel,另外我还打算做测试报告模板,包括敏感性分析等。您建议我这些功能如何封装这些功能,哪些功能放到一个文件中。
2023-12-19 10:23:16
689
原创 深度学习 该用什么标准判断差异最小
在选择标准时,最好根据您的问题领域和任务目标来权衡不同的性能指标。4. **决定系数 (R-squared):** 决定系数表示模型能够解释目标变量方差的百分比。1. **均方根误差 (RMSE):** RMSE 是预测值和真实值之间差异的平方的平均值的平方根。它对较大的误差更加敏感。3. **平均百分比误差 (MAPE):** MAPE 表示平均预测误差的百分比。2. **平均绝对误差 (MAE):** MAE 是预测值和真实值之间绝对差异的平均值。决定差异最小的标准通常依赖于您的具体问题和任务。
2023-12-18 22:58:22
681
原创 深度学习 计算预测和真实值之间的差异
要计算预测和真实值之间的差异,可以首先将真实值加载到一个 pandas DataFrame 中,然后将预测值和真实值连接在一起,最后计算它们的差异。以下是一个示例代码:```python。在这个示例中,`result_df` 是包含预测数据、真实数据和它们之间差异的 DataFrame。您需要根据实际的数据结构调整列名称。这将确保 Excel 中的差异值是格式化后的字符串,而不是默认的浮点数。
2023-12-18 22:55:26
1046
原创 安装keras、tensorflow
使用清华大学的Anaconda镜像可能会解决SSL证书验证问题。确保你使用的是最新版本的Conda。如果你使用了代理,尝试暂时关闭它,然后再次运行安装命令。确保你的计算机能够正常访问互联网。
2023-11-17 15:15:29
938
原创 SSL证书验证失败
请记住,在某些网络环境中,你可能需要管理员权限来更改代理设置。如果你无法更改代理设置,请联系你的网络管理员。如果你知道你的代理设置,你可以使用命令行来设置代理为空。请注意,这些命令仅在当前会话中禁用代理。当你关闭命令行窗口时,设置将被重置。如果你是通过浏览器连接到互联网,可以在浏览器设置中禁用代理。
2023-11-17 14:53:32
448
原创 使用过去20天测试未来7天,时间步是多少
在使用循环神经网络 (RNN) 或长短时记忆网络 (LSTM) 这样的模型时,你可以将时间步的选择视为一个超参数。如果你的时间序列数据具有明显的周期性,例如每周、每月或每年的季节性,你可能希望设置时间步来捕捉这些周期性的信息。在使用过去20天的数据预测未来7天时,时间步的设置通常取决于你对问题的理解以及模型的设计。试验不同的时间步设置,并通过模型的性能指标(如均方误差、平均绝对误差等)来评估模型的效果。较大的时间步可能会捕捉更多的历史信息,但也可能使问题变得更复杂。参数定义了预测未来多少天。
2023-11-16 23:23:24
266
原创 通过20天预测7天
这个例子中,`look_back`参数是用来确定用多少天的数据作为输入特征,`look_forward`参数是用来确定预测未来多少天的数据。5. **评估模型性能:** 比较模型预测的未来7天和实际的未来7天数据,评估模型的性能。2. **划分训练集和测试集:** 将整理好的数据划分为训练集和测试集。1. **数据准备:** 将过去20天的数据整理成合适的格式,其中包括20天的特征和未来7天的目标。4. **模型预测:** 使用训练好的模型在测试集上进行未来7天的预测。
2023-11-16 23:19:19
416
原创 【learning from data】2.1.2 Bounding the Growth Function 48页
be shattered (since no k-subset of all N points can be shattered), we deducethata+𝛽⩽B(N-1,k) (2.5)by definition of B. Further, no subset of size k- 1 of the first N - 1 points canbe shattered by the dichotomies in S$. If there existed su
2023-09-18 16:05:55
108
原创 【Learing from data】2.1.2 Bounding the Growth Function 第47页
因为在这种情况下,甚至不存在大小为k的子集;这个子集是空真的,我们在一点上有两个可能的二分法(+1和-1)。对于所有N,B(N,1)=1,因为如果不能粉碎1的子集,那么只能。第二个不同的二分法必须在至少一个点上有所不同,那么大小1的子集就会被粉碎。对于k>1,B(1,k)=2,
2023-09-17 22:04:02
90
原创 【Training versus Testing】Positive intervals
其中,(N+1)/2 表达了端点落在不同区域的数量,它是根据给定的 N 点来计算的。1. **端点落在不同区域的数量**:根据前面的解释,在 N 个点的情况下,两个端点可以以 (N+1)/2 种不同的方式分布在不同的区域,因为第一个端点有 N+1 种选择,但第二个端点必须与第一个端点所在的区域不同。6. 最后,计算这个表达式,得到 m_H(N) = (1/2) * N^2 + (1/2) * N + 1。2. **两个端点都在同一个区域的数量**:这表示两个端点都在 N+1 个区域中的同一个区域内。
2023-09-16 17:11:53
132
原创 【机器学习习题】估计一个模型在未见过的数据上的性能
您提到的不等式是统计学中的泛化误差界(generalization error bound),它用于估计一个模型在未见过的数据上的性能。此外,对于不同的问题和模型,可能需要不同的训练数据量来满足给定的泛化误差和置信度要求。因此,需要大约6908个数据点来满足给定的ε=0.1和δ=0.05,以确保泛化误差不会超过0.1。您的目标是找到一个数据集的大小N,以便满足给定的ε和δ,并保证泛化误差不会超过ε。:假设模型类别的大小(例如,假设我们正在训练的模型有多少个可能的候选)。:一个常数,通常设置为1。
2023-09-15 16:07:54
632
1
原创 《机器学习基石前四章复习》
"这里,我们总结一下前四节课的主要内容:第一节课,我们介绍了机器学习的定义,目标是找出最好的矩g,使g≈f ,保证Eout≈0;第四节课,我们介绍了机器学习的可行性,通过统计学知识,把 Ein(g)与 Eout(g)联系起来,证明了在一些条件假设下 Ein(g)≈Eout(g),成立。这些原则是确保机器学习模型有效性和泛化能力的基础。"另外,训练样本D应该足够大,且hypothesis set的个数是有限的,这样根据霍夫丁不等式,才不会出现Bad Data,保证Ein≈Eout,即有很好的泛化能力。
2023-09-15 12:01:31
99
原创 Learning From Data 中英文对照 1.THE LEARNING PROBLEM (第7页)
(N, yN ) that is currently misclassified, call it (x(t), g9(t)), anduses it to update w(t). Since the example is misclassified,we have gy(t)≠sign(wT(t)x(t)).The update rule is 我们的学习算法将使用一个简单的迭代方法找到这个w,下面是它的工作原理。在迭代t中,t=0,1,2,.,有权向量的当前值,称为w(T)。该算法从(x1,y1)…
2023-09-11 15:54:24
354
原创 Learning From Data 中英文对照 1.THE LEARNING PROBLEM (第6页)
例如,“未偿债务”领域的权重应该是负值,因为更多的债务对信用不利,偏差值b可能是大的或小的,反映了银行在扩展信贷时应该有多宽松或多严格,权重和偏差的最佳选择确定了算法产生的最终假设g∈H。参数w,w2,b的不同值对应于w 141+w2a2+b=0。图1.3:在二维输入空间中直线可分数据的感知器分类(A)一些训练示例将被错误分类(红色区域的蓝色点,反之亦然),用于定义分离线的权重参数的某些值。让我们假设每个电子邮件消息都是由关键字出现的频率来表示的,如果消息被认为是垃圾邮件,则输出为+1。
2023-09-11 15:34:40
204
原创 红米手机使用google play
1.在 Google Play 支持的设备列表内的小米/红米手机已预装谷歌服务,我们只需要安装Play 商店。1.开启谷歌服务: 设置 -> 帐号与同步 > 谷歌基础服务2.安装 Play 商店: 在应用商店搜索 [google play] ,安装[Google Play 商店]。如果找不到就从 Aptoide 安装安装完桌面就有 Play 商店啦。
2023-09-01 18:03:44
27458
原创 User二维连续型随机变量函数和二维连续型随机变量二者一般会有哪些应用
以上仅是一些常见应用领域,实际上,二维连续型随机变量函数和二维连续型随机变量在许多其他学科和工程领域中也有广泛应用,它们是处理和分析复杂系统行为的重要工具。二维连续型随机变量函数和二维连续型随机变量都是在概率统计学和相关领域中有广泛应用的概念。- 二维随机变量函数:用于图像处理中的去噪、图像增强等任务,通过对像素值的二维随机。,如在雷达系统中,目标的距离和方位可以用二维连续型随机变量表示,从而进行目标。**3. 图像处理和计算机视觉:****1. 信号处理和通信系统:****4. 地理信息系统:**
2023-07-28 08:07:10
590
原创 重采样的例子
方法进行重采样时,默认情况下,Pandas 会将重采样后的数据对齐到重采样周期的起始点。这意味着重采样结果的索引将是重采样周期的起始日期。的值与其他日期的值不同。它们是原始数据在对应周起始日期的值,而不是该周的平均值。的值是原始数据在对应周起始日期的值,而其他日期的值是该周内数据的平均值。),因此重采样结果的索引将是每周的起始日期。对于其他日期,它们是计算该周内所有数据的平均值得到的。的值不是平均值,而是原始数据在该时间点的值。在您提供的数据中,重采样的频率是每周 (是第一个周的起始日期,而。
2023-06-25 22:43:39
563
原创 使用jupyter代替pycharm
激活虚拟空间,原本可以不用虚拟空间,但是装不上pandas 1.3.4,所以创建虚拟空间,安装了pandas1,3,4,和视频保持版本一致在本地创建路径,进入路径,执行命令,
2023-06-03 22:26:21
430
原创 服务器通过命令方式部署三个项目
服务器是aws ce2 linux部署了三个项目,一个网站后台后端,一个网站后台前端管理系统,一个网站前台从5月18日开始预演,到今天11天时间。
2023-05-29 22:55:17
439
原创 在 AWS EC2 Linux 服务器上部署Gunicorn
在 Linux 系统中,你可以使用 systemd 来实现这个需求。6. 最后,你需要在 Nginx 或 Apache 中设置一个反向代理,将 HTTP 请求转发到 Gunicorn。你可以通过 `scp`,`rsync`,或者其他方式将应用上传到 EC2 实例上。在 AWS EC2 Linux 服务器上部署 Flask 应用的步骤类似,你也可以使用 Gunicorn。这里,第一个 `app` 是你的文件名(不包括 `.py` 扩展名),第二个 `app` 是 Flask 对象的名字。
2023-05-29 19:45:15
790
原创 linux文件夹的操作命令
目录下,并且在移动的过程中重命名为。如果你发现你没有写入这个目录的。文件夹及其所有内容移动到。文件夹及其所有内容移动到。
2023-05-29 15:58:46
991
原创 配置nginx常用命令
在重新加载或重启后,Nginx 将读取新的配置文件并应用更改。如果配置中存在语法错误,Nginx 将无法重新加载或重启,并显示错误消息。在修改 Nginx 配置文件之后,您需要重新加载或重启 Nginx 以使配置更改生效。具体的命令和方式可能因操作系统和版本而有所不同。在执行这些命令之前,请确保您具有足够的权限,或者在命令前使用 `sudo` 以管理员权限运行它们。希望这可以帮助您重新加载或重启 Nginx 并应用配置更改。如有其他问题,请随时提问。
2023-05-28 15:50:28
4797
1
原创 nginx
将请求代理到后端Flask应用程序的地址和端口。# 将请求代理到前端项目的地址和端口。# 将请求代理到前端项目的地址和端口。# 设置请求方法为原始请求方法。
2023-05-28 09:24:53
994
springboot_oa.zip
2019-12-18
vs2015开发的采用仓储的mvc简单架构
2018-01-06
Mybatis-Reverse.zip
2020-03-14
ojdbc6.zip
2020-03-14
HPSocket_Demo.zip
2019-12-07
shiro-web.zip
2019-12-08
过滤文本中的日期、手机号、中文内容并导出到excel(可安装运行)
2018-01-19
springboot-shiro.zip
2020-01-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人