WNTR+LSTM实战进阶

在之前的文章中,我们已经试着写出了最简单的LSTM层,但是在测试方面出了一点小的异常,导致超过测试集的部分无法连续输出预测值。本文在完成超过测试集的输入过程中,还进行模型的调参过程。
首先是之前的代码部分。

import torch
import torch.nn as nn
from torch.utils.data import Dataset,DataLoader
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
from sklearn.preprocessing import MinMaxScaler

time_series = pd.read_csv('../wntr-data/pressure data.csv')

node5_15min = time_series.loc[:,'5']
# print(len(node5_15min))
#
#
# plt.plot(node5_15min[:385])
# plt.show()

#把数据转换成浮点数
all_data = node5_15min.values.astype(float)
all_data = all_data[:1250]

#选择输入的波形
test_data_size = 16
train_data = all_data[:-test_data_size]
test_data = all_data[-test_data_size:]

scaler = MinMaxScaler(feature_range=(0, 1))
train_data_normalized = scaler.fit_transform(train_data .reshape(-1, 1))

train_data = torch.FloatTensor(train_data_normalized).view(-1)

train_window = 7
def create_inout_sequences(input_data, tw):
    inout_seq = []
    L = len(input_data)
    for i in range(672,L-tw):
        train_seq1 = input_data[i:i+tw]
        train_seq2 = input_data[i+tw-96*7:i+tw:96]
        train_seq = torch.cat([train_seq1,train_seq2])
        train_label = input_data[i+tw:i+tw+1]
        inout_seq.append((train_seq ,train_label))
    return inout_seq

train_inout_seq = create_inout_sequences(train_data, train_window)
# print(train_inout_seq[:5])

device = torch.device('cuda')

class LSTM(nn.Module):
    def __init__(self, input_size=1, hidden_layer_size=64, output_size=1):
        super().__init__()
        self.hidden_layer_size = hidden_layer_size

        self.lstm = nn.LSTM(input_size, hidden_layer_size)

        self.linear = nn.Linear(hidden_layer_size, output_size)

        self.hidden_cell = (torch.zeros(1,1,self.hidden_layer_size),
                            torch.zeros(1,1,self.hidden_layer_size))

    def forward(self, input_seq):
        lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq) ,1, -1), self.hidden_cell)
        predictions = self.linear(lstm_out.view(len(input_seq), -1))
        return predictions[-1]
model = LSTM().to(device)
loss_function = nn.MSELoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.002)

epochs = 101

for i in range(epochs):
    for seq, labels in train_inout_seq:
        seq,labels =seq.to(device),labels.to(device)
        optimizer.zero_grad()
        a = torch.zeros(1, 1, model.hidden_layer_size).to(device)
        b = torch.zeros(1, 1, model.hidden_layer_size).to(device)
        model.hidden_cell = (a,b)


        y_pred = model(seq)

        single_loss = loss_function(y_pred, labels)
        single_loss.backward()
        optimizer.step()

    if i%25 == 1:
        print(f'epoch: {i:3} loss: {single_loss.item():10.8f}')

接下来我们进行窗口的滑动,把训练好的模型用来预测之后的10个数据,并且添加到另一个列表中,train_data只用来调参。
原先的train_data复制一下为data_pred,然后去最后7个参数作为顺序的原始时间序列,即第一个输入。第二个输入是[-95,-95-96,-95-96 * 2,…-95-96 *6 ]是预测时间的间隔为24h的前7天。最后把预测结果添加到data_pred

data_pred =  train_data[:].tolist()

for i in range(10):
    inputs_ =data_pred[-train_window:]
    inputs_.append(data_pred[-95])
    test_inputs1 = torch.FloatTensor(inputs_)
    test_inputs2 =torch.FloatTensor(data_pred[-95-96:-95-(96*6)-1:-96])
    seq = torch.cat([test_inputs1,test_inputs2]).to(device)
    with torch.no_grad():
        a = torch.zeros(1, 1, model.hidden_layer_size).to(device)
        b = torch.zeros(1, 1, model.hidden_layer_size).to(device)
        model.hidden_cell = (a, b)
        data_pred.append(model(seq).item())


actual_predictions = scaler.inverse_transform(np.array(data_pred[-10:] ).reshape(-1, 1))
print(actual_predictions[-5:])


#画出预测的10个值和真实的10个值

plt.title('predictdata vs realdata')
plt.ylabel('pressure')
plt.grid(True)
plt.plot(test_data[-10:])
plt.plot(actual_predictions)
plt.legend(['real','predict'])
plt.show()

在这里插入图片描述

终于完成了!之后我们将使用全部数据,深度网络进行调整

  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值