求公约数和公倍数 欧几里得算法

假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里得算法,是这样进行的:

1997 / 615 = 3 (余 152)

615 / 152 = 4(余7)

152 / 7 = 21(余5)

7 / 5 = 1 (余2)

5 / 2 = 2 (余1)

2 / 1 = 2 (余0)

至此,最大公约数为1

以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 

#include <stdio.h>  

#include <math.h>



int main(){

int m,n;

scanf("%d %d",&m,&n);

int yushu;

yushu=m%n;

int  x;

x=m*n;//记录m*n为后面求公倍数



if(yushu==0){

printf("%d %d",n,x/n);

}else{



while(yushu!=0){

m=n;

n=yushu;

yushu=m%n;  

}

printf("%d %d",n,x/n);

}          

    return 0;  

 }

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值