Flink从入门到精通100篇(十七)-Spark/Flink广播如何实现作业配置动态更新?

本文探讨在实时计算中如何动态更新作业配置,避免每次变动都需要重启作业。通过比较Spark Streaming和Flink的广播机制,解释Flink如何利用广播状态实现低延迟动态更新,而Spark则需要通过特定方式实现更新。Flink的BroadcastProcessFunction在处理广播数据时起到关键作用,确保一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

前言

 

在实时计算作业中,往往需要动态改变一些配置,举几个栗子:

 

实时日志ETL服务,需要在日志的格式、字段发生变化时保证正常解析;

 

实时NLP服务,需要及时识别新添加的领域词与停用词;

 

实时风控服务,需要根据业务情况调整触发警告的规则。

 

那么问题来了:配置每次变化都得手动修改代码,再重启作业吗?答案显然是否定的,毕竟实时任务的终极目标就是7 x 24无间断运行。Spark Streaming和Flink的广播机制都能做到这点,本文分别来简单说明一下。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值