前言
在实时计算作业中,往往需要动态改变一些配置,举几个栗子:
实时日志ETL服务,需要在日志的格式、字段发生变化时保证正常解析;
实时NLP服务,需要及时识别新添加的领域词与停用词;
实时风控服务,需要根据业务情况调整触发警告的规则。
那么问题来了:配置每次变化都得手动修改代码,再重启作业吗?答案显然是否定的,毕竟实时任务的终极目标就是7 x 24无间断运行。Spark Streaming和Flink的广播机制都能做到这点,本文分别来简单说明一下。
在实时计算作业中,往往需要动态改变一些配置,举几个栗子:
实时日志ETL服务,需要在日志的格式、字段发生变化时保证正常解析;
实时NLP服务,需要及时识别新添加的领域词与停用词;
实时风控服务,需要根据业务情况调整触发警告的规则。
那么问题来了:配置每次变化都得手动修改代码,再重启作业吗?答案显然是否定的,毕竟实时任务的终极目标就是7 x 24无间断运行。Spark Streaming和Flink的广播机制都能做到这点,本文分别来简单说明一下。