数据中台(二)数据质量分析及提升

数据中台分析指出,数据质量问题源于管理、流程、信息和技术因素。改进需结合组织管理和技术手段,如数据分析、数据清洗和监控。主数据治理是关键,涉及数据模型设计、主数据管理方案制定、数据清洗流程以及技术方案。数据质量标准包括六个维度,通过评估这些标准来量化和改进数据质量。大数据质量治理依赖于数据中台的数据清洗和ID Mapping技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般情况下,企业都有多套的业务系统,一些大型企业甚至会有上百套的业务系统。这些业务在不同时期由不同的团队开发完成。因此,这些业务系统都参考着不同的标准生产各自数据。由于滥用缩写词,惯用语,数据输入错误,重复记录,丢失值,拼写变化,不同的计量单位,大量应用系统产生的大量数据是脏数据。这些脏数据是没有意义的,根本就不可能为以后的数据挖掘决策分析提供任何支持。这就是数据质量问题的由来。

 

一般来说数据质量问题有四个因素造成:

8be46b5fef0d54b6d99479e8e55a04dd0d1133b2

 

从上述的四因素来说,管理因素和流程因素属于组织管理范畴,信息因素和技术因素属于技术范畴。所以,要改进数据质量问题,要从组织管理和技术两方面入手,才能从根本上,最佳地解决数据质量问题。

 

从方法论的角度,从组织管理上去改进质量,我们能做的是:

  • 确立组织数据质量改进目标

  • 评估组织流程

  • 制定组织流程改

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值