【数据可视化应用】IDW插值计算实战案例(附Python和R语言代码)

本文介绍了使用Python和R语言进行IDW(反距离权重)插值计算的实战案例,详细展示了从自定义Python代码计算空间IDW到利用R-gstat包进行IDW插值的过程,并通过plotnine、Basemap和ggplot2进行结果的可视化。内容涵盖数据预处理、插值计算、地图裁剪等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python版本

IDW简介

反距离权重 (IDW) 插值假设:彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值与距离预测位置较远的测量值相比,距离预测位置最近的测量值对预测值的影响更大。反距离权重法假定每个测量点都有一种局部影响,而这种影响会随着距离的增大而减小。由于这种方法为距离预测位置最近的点分配的权重较大,而权重却作为距离的函数而减小,因此称之为反距离权重法。(解释来源于网络),繁琐的公式也没放,这里我们给出几张示意图即可,原理不解的小伙伴可自行百度。

图片

(基于采样点距离的IDW插值(左)从高程矢量点插值的IDW曲面(右))

自定义Python代码计算空间IDW

我们免去了了繁琐的IDW插值原理部分,这节我们直接根据原理自定义IDW函数,根据已有样例站点位置及对应值,计算IDW结果。在这之前,我们给出所需样例的预览及地图文件的范围(构建插值网格所需),结果如下:

样例点:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值