机器学习实战应用案例100篇(十六)-旅行商问题(TSP)从原理到实战应用

本文深入探讨旅行商问题(TSP),解释其作为组合优化问题的数学模型,阐述计算复杂度,并详细介绍了三种求解方法:暴力枚举、动态规划和回溯。通过对每种方法的原理和实现进行讲解,揭示了解决TSP问题的思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

旅行商问题(TSP)

1 简介

旅行商问题属于组合优化问题。

组合优化问题(Combinatorial Optimization Problem,COP)是一类在离散状态下求极值的问题。把某种离散对象按某个确定的约束条件进行安排,当已知合乎这种约束条件的特定安排存在时寻求这种特定安排在某个优化准则下的极大解或极小解

TSP 的经典提法是:有一个销售员要去若干个城市销售货品,从某个固定城市出发(假设每个城市之间的距离固定),经过剩下的每个城市至少一次,然后回到起始城市,问题是选择哪条线路,才能使总行程最短。

该问题在图论意义下就是所谓的 Hamilton 圈问题。

上图展示的是一个无向图 G,假设从任意一个顶点出发,剩下每一个顶点恰好遍历一次,最后回到原点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值