数据挖掘之KNN分类

KNN是一种基于实例的学习算法,无需训练,通过寻找K个最近邻进行分类。K值的选择影响分类结果,例如在某些情况下,K值的增大可能导致分类改变。在数据集不均衡时,需考虑各类比例来投票,以避免小类正确率降低。KNN算法在类边界附近的分类稳定性较高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类算法有很多,贝叶斯、决策树、支持向量积、KNN等,神经网络也可以用于分类。这篇文章主要介绍一下KNN分类算法。

1、介绍

  KNN是k nearest neighbor 的简称,即

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值