一.引入 决策树基本上是每一本机器学习入门书籍必讲的东西,其决策过程和平时我们的思维很相似,所以非常好理解,同时有一堆信息论的东西在里面,也算是一个入门应用,决策树也有回归和分类,但一般来说我们主要讲的是分类,方便理解嘛。 虽然说这是一个很简单的算法,但其实现其实还是有些烦人,因为其feature既有离散的,也有连续的,实现的时候要稍加注意 (不同特征的决策,图片来自【1】) O-信息论的一些point: 首先看这里: http://blog.csdn.net/dark_scope/article/details/8459576 然后加入一个叫信息