牛顿方法

本次课程介绍了牛顿方法在拟合Logistic回归中的优势,这是一种比梯度上升更快的优化算法。还探讨了指数分布族,包括伯努利和高斯分布,并证明了它们属于指数分布族。最后,阐述了广义线性模型(GLM)的概念,以Logistic和多项式分布为例,展示了如何推导出GLM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本次课程大纲:

1、  牛顿方法:对Logistic模型进行拟合

2、 指数分布族

3、  广义线性模型(GLM:联系Logistic回归和最小二乘模型

 

复习:

Logistic回归:分类算法

假设给定<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值