tensorflow 中 sparse_softmax_cross_entropy_with_logits 与 softmax_cross_entropy_with_logits区别

本文对比了TensorFlow中的两种交叉熵损失函数:softmax_cross_entropy_with_logits与sparse_softmax_cross_entropy_with_logits。前者要求标签为one-hot形式,后者接受整数形式的标签,适用于类别较少的情况。
摘要由CSDN通过智能技术生成

在tensorflow的入门教程中,有使用mnist数据集搭建了一层的简单网络,然后在在计算输出及loss的时候, 使用到了 softmax_cross_entropy_with_logits ,同时 tensorflow中还有sparse_ softmax_cross_entropy_with_logits,这两个的意义是基本相同的,那它们有什么区别呢?

如果看tensorflow源码,比较容易能看出来这两者的区别。

 以基本的mnist分类场景有例,mnist有10类,训练时的batch size为batch_num

(1) 则若使用 softmax_cross_entropy_with_logits, 则其labels参数需要是一个[batch_size, 10]的矩阵,其中每行代表一个instance, 是one hot的形式,其非0 index代表属于哪一类。

(2)若使用sparse_softmax_cross_entropy_with_logits, 则其Labels参数是一个[batch_size]的列,里面每个属于0到9中间的整数,代表类别,所以函数名称加了sparse, 类似稀疏表示。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值