题目背景
NOIP2018 提高组 D1T1
题目描述
春春是一名道路工程师,负责铺设一条长度为 nn 的道路。
铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 nn 块首尾相连的区域,一开始,第 ii 块区域下陷的深度为 d_idi 。
春春每天可以选择一段连续区间 [L,R][L,R] ,填充这段区间中的每块区域,让其下陷深度减少 11。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为 00 。
春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为 00 。
输入格式
输入文件包含两行,第一行包含一个整数 nn,表示道路的长度。 第二行包含 nn 个整数,相邻两数间用一个空格隔开,第 ii 个整数为 d_idi 。
输出格式
输出文件仅包含一个整数,即最少需要多少天才能完成任务。
输入输出样例
输入 #1复制
6 4 3 2 5 3 5
输出 #1复制
9
说明/提示
【样例解释】
一种可行的最佳方案是,依次选择: [1,6][1,6]、[1,6][1,6]、[1,2][1,2]、[1,1][1,1]、[4,6][4,6]、[4,4][4,4]、[4,4][4,4]、[6,6][6,6]、[6,6][6,6]。
【数据规模与约定】
对于 30\%30% 的数据,1 ≤ n ≤ 101≤n≤10 ;
对于 70\%70% 的数据,1 ≤ n ≤ 10001≤n≤1000 ;
对于 100\%100% 的数据,1 ≤ n ≤ 100000 , 0 ≤ d_i ≤ 100001≤n≤100000,0≤di≤10000 。
这道题的思路:将后面的数(a[i])一一使他们的的深度<=a[i - 1],最后就形成了一个不递增数列,最后就可以用a[0]次操作将他们的深度变成0了。
代码:
#include <bits/stdc++.h>
using namespace std;
int n,a[100001],ans;
int main()
{
cin>>n;
for(int i = 0; i < n; i++) cin>>a[i];
for(int i = 1; i < n; i++)
if(a[i] > a[i - 1])
ans += a[i] - a[i - 1];
cout<<ans + a[0];
return 0;
}