Acwing796. 子矩阵的和——二维前缀和


在这里前缀和数组s[x][y]代表从a[1][1]到a[x][y]的矩阵中所有数的和。

大略如图所示:

详细推导:

  


紫色面积是指(1, 1)左上角到(i, j - 1)右下角的矩形面积, 绿色面积是指(1, 1)左上角到(i - 1, j )右下角的矩形面积。每一个颜色的矩形面积都代表了它所包围元素的和。

从图中我们很容易看出,整个外围蓝色矩形面积s[i][j] = 绿色面积s[i - 1][j] + 紫色面积s[i][j - 1] - 重复加的红色的面积s[i - 1][j - 1] + 小方块的面积a[i][j];

因此得出二维前缀和预处理公式:s[i][j] = s[i - 1][j] + s[i][j - 1 ] + a[i] [j] - s[i - 1][j - 1]

接下来回归问题去求以(x1,y1)为左上角和以(x2,y2)为右下角的矩阵的元素的和。

如图:


紫色面积是指 (1, 1)左上角到(x1 - 1, y2)右下角的矩形面积 ,黄色面积是指(1, 1)左上角到(x2, y1 - 1)右下角的矩形面积; 

不难推出:


绿色矩形的面积 = 整个外围面积s[x2, y2] - 黄色面积s[x2, y1 - 1] - 紫色面积s[x1 - 1, y2] + 重复减去的红色面积 s[x1 - 1, y1 - 1] 

因此二维前缀和的结论为:

以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1, y1 - 1]

总结:


————————————————
版权声明:本文部分内容为CSDN博主「林小鹿@」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_45629285/article/details/111146240


#include<bits/stdc++.h>
using namespace std;
int a[1001][1001],s[1001][1001],n,m,q,x_1,x_2,y_1,y_2;
int main()
{
  cin>>n>>m>>q;
  for(int i = 1; i <= n; i++)
    for(int j = 1; j <= m; j++)
    {
      int t;
      scanf("%d",&t);
      a[i][j] = t;
      s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
    }
  while(q--)
  {
    scanf("%d%d%d%d",&x_1,&y_1,&x_2,&y_2);
    printf("%d\n",s[x_2][y_2] - s[x_1 - 1][y_2] - s[x_2][y_1 - 1] + s[x_1 - 1][y_1 - 1]);
  }
  return 0;
}

如果这篇文章对您有帮助的话,请记得点赞收藏加关注吖(●'◡'●)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值