在这里前缀和数组s[x][y]代表从a[1][1]到a[x][y]的矩阵中所有数的和。
大略如图所示:
详细推导:
紫色面积是指(1, 1)左上角到(i, j - 1)右下角的矩形面积, 绿色面积是指(1, 1)左上角到(i - 1, j )右下角的矩形面积。每一个颜色的矩形面积都代表了它所包围元素的和。
从图中我们很容易看出,整个外围蓝色矩形面积s[i][j] = 绿色面积s[i - 1][j] + 紫色面积s[i][j - 1] - 重复加的红色的面积s[i - 1][j - 1] + 小方块的面积a[i][j];
因此得出二维前缀和预处理公式:s[i][j] = s[i - 1][j] + s[i][j - 1 ] + a[i] [j] - s[i - 1][j - 1]
接下来回归问题去求以(x1,y1)为左上角和以(x2,y2)为右下角的矩阵的元素的和。
如图:
紫色面积是指 (1, 1)左上角到(x1 - 1, y2)右下角的矩形面积 ,黄色面积是指(1, 1)左上角到(x2, y1 - 1)右下角的矩形面积;
不难推出:
绿色矩形的面积 = 整个外围面积s[x2, y2] - 黄色面积s[x2, y1 - 1] - 紫色面积s[x1 - 1, y2] + 重复减去的红色面积 s[x1 - 1, y1 - 1]
因此二维前缀和的结论为:
以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1, y1 - 1]
总结:
————————————————
版权声明:本文部分内容为CSDN博主「林小鹿@」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_45629285/article/details/111146240
#include<bits/stdc++.h>
using namespace std;
int a[1001][1001],s[1001][1001],n,m,q,x_1,x_2,y_1,y_2;
int main()
{
cin>>n>>m>>q;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
int t;
scanf("%d",&t);
a[i][j] = t;
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
}
while(q--)
{
scanf("%d%d%d%d",&x_1,&y_1,&x_2,&y_2);
printf("%d\n",s[x_2][y_2] - s[x_1 - 1][y_2] - s[x_2][y_1 - 1] + s[x_1 - 1][y_1 - 1]);
}
return 0;
}
如果这篇文章对您有帮助的话,请记得点赞收藏加关注吖(●'◡'●)