初中数学:绝对式和的最小值

一,引入

初中生学了绝对值后,会经常遇到一个类型题,求一个式子绝对值的最小值。形如│x-a│,因当x无限大时,式子的绝对值无限大,而绝对值是一个非负数,所以式子的绝对值最小为0,此时,x=a。所以,绝对值的最小值是经常考察的一个知识点。接下我们就总结一下绝对值最小值的类型题。


二、求绝对式和的最小值

首先我们要了解绝对值几何含义一个数绝对值表示这个数在数轴上到原点的距离两个数差绝对值表示两个数在数轴上间的距离。计算方法是大数减小数

1.绝对值的几何含义

a<0, b>0,且 │a│<│ b│,有:
│a│=0-a =-a, │ b│=b-0=b,│b-a│=b-a, │a-b│=b-a。

形如│a+b│,我们可以看作为│a+b│=│a-(-b)│=a-(-b)=a+b。即遇到相加的形式,写成的形式,构造绝对值的几何意义。

2、两个绝对式的和

形如│x-a│+│x-b│(a>b)求它的最小值

(1)当x在b的左边时

│x-a│+│x-b│=线段xb长+线段xa长>线段ab长

(2)当x在b上时

│x-a│+│x-b│=0+线段ab长=线段ab长。

(3)当x在a,b之间时

│x-a│+│x-b│=线段xb长+线段ax长=ab长。

(4)当x在a上时

│x-a│+│x-b│=线段xb长+0=线段ab长。

(5)当x在a的右边时

│x-a│+│x-b│=线段xb长+线段xa长>线段ab长。

通过上面分析,可知:

b≤x≤a时, │x-a│+│x-b│最小值,长度为 线段ab长=a-b

练习

1.

请问│x-3│+│x-8│=多少?

ans:│x-3│+│x-8│=8-3=5

2.

请问│x-3│+│x+8│=多少?

ans:│x-3│+│x+8│=3-(-8)=11

3、三个绝对式的和

形如│x-a│+│x-b│+│x-c│(a>b>c),求它的最小值

进过上面分析,我们已经知道│x-a│+│x-c│的最小值为a-c,那么只需确定│x-b│的最小值就可以了。当x=b时,│x-b│最小为0

所以:

当且仅当x=b时, │x-a│+│x-b│+│x-c│为最小值最小值为a-c。

练习

│x-5│+│x-8│+│x-10│=?。

ans:│x-5│+│x-8│+│x-10│=10-5=5

4、四个绝对式的和

形如│x-a│+│x-b│+│x-c│+│x-d│(a>b>c>d),求它的最小值

综上分析,我们可知│x-a│+│x-d│最小值a-d│x-b│+│x-c│最小值b-c

所以:

│x-a│+│x-b│+│x-c│+│x-d│最小值就为a-d+b-c= a+b-c-d

5、五个绝对式的值

形如│x-a│+│x-b│+│x-c│+│x-d│+│x-e│(a>b>c>d>e),求它的最小值

综上分析,我们可知│x-a│+│x-e│最小值a-e│x-b│+│x-d│最小值b-d,现在只需使│x-c│最小即可。由此可知当且仅当x=c时,,

│x-a│+│x-b│+│x-c│+│x-d│+│x-e│为最小值:a-e+b-d= a+b-e-d

6,结论

通过以上分析,我们可以得出形如│x-a│+│x-b│+│x-c│+│x-d│+......的最小值的求解方法。

(1)将每个绝对式的形式写成│x-a│的形式。

(2)将各个数它按从大到小排列(从小到大也可以)。

(3)若绝对式的个数是偶数个,可以将数按排列顺序分成相等的两部分,用前面数的和减去后面数的和,就是所求结果。

(4)若绝对式的个数是奇数个,将数按最中间的数为分界点,前面的数分为一部分,后面的数分为一部分,用前面数的后,减去后面数的后,就是所求结果。

也就是


三,结语

好了,关于绝对式的和就讲到这里。喜欢的朋友可以关注+点赞+收藏哦,我会不定期与你分享数学和编程知识。bye~bye~

末尾有彩蛋你信吗















四,彩蛋(不喜勿看)

hhh,恭喜你,喜提我精心准备的举一反三的练习题一份!(附讲解)

  1. 例题1

|x-3|+2*|x+5|+3*|x-7|,要使这个算式最小,x的范围是___~___?

ans:

其实很简单,把乘改成加,再套公式即可

|x-3|+2*|x+5|+3*|x-7|

=|x-3|+2*|x-(-5)|+3*|(x-7)|

=|x-3|+|x-(-5)|+|x-(-5)|+|(x-7)|+|(x-7)|+|(x-7)|

那么此时n为偶数,所以此时将数组{3,-5,-5,7,7,7}排一下序变成{-5,-5,3,7,7,7},

中间的2个数为3,7,所以答案为:x的范围是3~7

  1. 例题2

|x-3|+|2x+5|+ |3x-7|,要使这个算式最小,x的范围是___~___?

ans:

上一题的举一反三,将x前面乘的系数移到绝对值符号外即可。

|x-3|+|2x+5|+ |3x-7|

=|x-3|+2*|x+(5/2)|+3*|x-(7/3)|

=|x-3|+|x+(5/2)|+|x+(5/2)|+|x-(7/3)|+|x-(7/3)|+|x-(7/3)|

那么此时n为偶数,所以此时将数组{3,5/2,5/2,7/3,7/3,7/3}排一下序变成{7/3,7/3,7/3,5/2,5/2,3},

中间的2个数为7/3,5/2,所以答案为:x的范围是7/3~5/2

如果本蒟蒻的文章某处有误请各位大佬们在评论区指正,谢谢!

真的没有了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值