一,引入
初中生学了绝对值后,会经常遇到一个类型题,求一个式子绝对值的最小值。形如│x-a│,因当x无限大时,式子的绝对值也无限大,而绝对值是一个非负数,所以式子的绝对值最小为0,此时,x=a。所以,绝对值的最小值是经常考察的一个知识点。接下我们就总结一下绝对值最小值的类型题。
二、求绝对式和的最小值
首先我们要了解绝对值的几何含义。一个数的绝对值表示这个数在数轴上到原点的距离。两个数差的绝对值表示两个数在数轴上间的距离。计算方法是大数减小数。

1.绝对值的几何含义
若 a<0, b>0,且 │a│<│ b│,有:
│a│=0-a =-a, │ b│=b-0=b,│b-a│=b-a, │a-b│=b-a。
形如│a+b│,我们可以看作为│a+b│=│a-(-b)│=a-(-b)=a+b。即遇到相加的形式,写成减的形式,构造绝对值的几何意义。
2、两个绝对式的和
形如│x-a│+│x-b│,(a>b)求它的最小值。

(1)当x在b的左边时
│x-a│+│x-b│=线段xb长+线段xa长>线段ab长。
(2)当x在b上时
│x-a│+│x-b│=0+线段ab长=线段ab长。
(3)当x在a,b之间时
│x-a│+│x-b│=线段xb长+线段ax长=ab长。
(4)当x在a上时
│x-a│+│x-b│=线段xb长+0=线段ab长。
(5)当x在a的右边时
│x-a│+│x-b│=线段xb长+线段xa长>线段ab长。
通过上面分析,可知:
当 b≤x≤a时, │x-a│+│x-b│是 最小值,长度为 线段ab长=a-b。
练习
1.
请问│x-3│+│x-8│=多少?
ans:│x-3│+│x-8│=8-3=5
2.
请问│x-3│+│x+8│=多少?
ans:│x-3│+│x+8│=3-(-8)=11
3、三个绝对式的和
形如│x-a│+│x-b│+│x-c│,(a>b>c),求它的最小值。

进过上面分析,我们已经知道│x-a│+│x-c│的最小值为a-c,那么只需确定│x-b│的最小值就可以了。当x=b时,│x-b│最小为0。
所以:
当且仅当x=b时, │x-a│+│x-b│+│x-c│为最小值, 最小值为a-c。
练习
│x-5│+│x-8│+│x-10│=?。
ans:│x-5│+│x-8│+│x-10│=10-5=5
4、四个绝对式的和
形如│x-a│+│x-b│+│x-c│+│x-d│,(a>b>c>d),求它的最小值。

综上分析,我们可知│x-a│+│x-d│有最小值为a-d,│x-b│+│x-c│有最小值为b-c。
所以:
│x-a│+│x-b│+│x-c│+│x-d│的 最小值就为a-d+b-c= a+b-c-d。
5、五个绝对式的值
形如│x-a│+│x-b│+│x-c│+│x-d│+│x-e│,(a>b>c>d>e),求它的最小值。
综上分析,我们可知│x-a│+│x-e│有最小值为a-e,│x-b│+│x-d│有最小值为b-d,现在只需使│x-c│最小即可。由此可知当且仅当x=c时,,
│x-a│+│x-b│+│x-c│+│x-d│+│x-e│为最小值:a-e+b-d= a+b-e-d。
6,结论
通过以上分析,我们可以得出形如│x-a│+│x-b│+│x-c│+│x-d│+......的最小值的求解方法。
(1)将每个绝对式的形式写成│x-a│的形式。
(2)将各个数它按从大到小排列(从小到大也可以)。
(3)若绝对式的个数是偶数个,可以将数按排列顺序分成相等的两部分,用前面数的和减去后面数的和,就是所求结果。
(4)若绝对式的个数是奇数个,将数按最中间的数为分界点,前面的数分为一部分,后面的数分为一部分,用前面数的后,减去后面数的后,就是所求结果。
也就是

三,结语
好了,关于绝对式的和就讲到这里。喜欢的朋友可以关注+点赞+收藏哦,我会不定期与你分享数学和编程知识。bye~bye~

末尾有彩蛋你信吗
四,彩蛋(不喜勿看)
hhh,恭喜你,喜提我精心准备的举一反三的练习题一份!(附讲解)
-
例题1
|x-3|+2*|x+5|+3*|x-7|,要使这个算式最小,x的范围是___~___?
ans:
其实很简单,把乘改成加,再套公式即可。
|x-3|+2*|x+5|+3*|x-7|
=|x-3|+2*|x-(-5)|+3*|(x-7)|
=|x-3|+|x-(-5)|+|x-(-5)|+|(x-7)|+|(x-7)|+|(x-7)|
那么此时n为偶数,所以此时将数组{3,-5,-5,7,7,7}排一下序变成{-5,-5,3,7,7,7},
中间的2个数为3,7,所以答案为:x的范围是3~7
-
例题2
|x-3|+|2x+5|+ |3x-7|,要使这个算式最小,x的范围是___~___?
ans:
上一题的举一反三,将x前面乘的系数移到绝对值符号外即可。
|x-3|+|2x+5|+ |3x-7|
=|x-3|+2*|x+(5/2)|+3*|x-(7/3)|
=|x-3|+|x+(5/2)|+|x+(5/2)|+|x-(7/3)|+|x-(7/3)|+|x-(7/3)|
那么此时n为偶数,所以此时将数组{3,5/2,5/2,7/3,7/3,7/3}排一下序变成{7/3,7/3,7/3,5/2,5/2,3},
中间的2个数为7/3,5/2,所以答案为:x的范围是7/3~5/2
如果本蒟蒻的文章某处有误请各位大佬们在评论区指正,谢谢!


真的没有了!