872. 最大公约数(史上最详细讲解 7种算法,STL+算法标准实现)


一,什么是最大公约数
最大公约数(Greatest Common Divisor)指两个或多个整数共有约数中最大的一个。也称最大公因数、最大公因子,a, b的最大公约数记为(a,b),同样的,a,b,c的最大 公约数记为(a,b,c),多个 整数的最大公约数也有同样的记号。求最大公约数有多种 方法,常见的有 质因数分解法、 短除法、 辗转相除法、 更相减损法。


二,辗转相减法求最大公约数(又称更相损减术)
用(a,b)表示a和b的最大公因数:有结论(a,b)=(a,k*a+b),其中a、b、k都为自然数。

也就是说,两个数的最大公约数,将其中一个数加到另一个数上,得到的新数,其公约数不变,比如(4,6)=(4+6,6)=(4,6+2×4)=2.

要证明这个原理很容易:如果p是a和k*a+b的公约数,p整除a,也能整除k*a+b.那么就必定要整除b,所以p又是a和b的公约数,从而证明他们的最大公约数也是相等的.

基于上面的原理,就能实现我们的迭代相减法:(78,14)=(64,14)=(50,14)=(36,14)=(22,14)=(8,14)=(8,6)=(2,6)=(2,4)=(2,2)=(0,2)=2

基本上思路就是大数减去小数,一直减到能算出来为止,在作为练习的时候,往往进行到某一步就已经可以看出得值.

更相减损法出自《九章算术》:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
具体方法为两个数之间大的数字减小的数字,之后将得到的差作为减数,较小的数作为被减数,再次相减,直到与所得的差相同,此时的差即为两个数之间的最大公约数。

代码:

int gcd2(int a, int b)
{
    while(a != b)
        if(a > b) a -= b;
        else b -= a;
    return a;
}

四,辗转相减到辗转相除
迭代相减法简单,不过步数比较多,实际上我们可以看到,在上面的过程中,由(78,14)到(8,14)完全可以一步到位,因为(78,14)=(14×5+8,14)=(8,14),由此就诞生出我们的辗转相除法.

即:(a, b) = (a % b, b) = (b, a %b)

相当于每一步都把数字进行缩小,等式右边就是每一步对应的缩小结果。

对(a, b)连续使用辗转相除,直到小括号内右边数字为0,小括号内左边的数就是两数最大公约数。

时间复杂度:O(log n)(以2为底)

附,证明图:

代码:

#include <bits/stdc++.h>
using namespace std;
long long n,a,b;
int ggcd(int n,int m)
{
  return (n == 0) ? m : f((m % n),n);
}
int main()
{
  cin>>n;
  while(n--)
  {
    cin>>a>>b;
    cout<<ggcd(a,b)<<endl;
  }
  return 0;
}

五,STL

1.__gcd(a,b)

库algorithm
在库algorithm中提供了求最大公约数的方法,这是目前我所找到的最快的算法,没有之一。具体使用方法是__gcd(a, b) 即返回了ab的最大公约数,需要注意的是gcd前面有两个下划线。

代码:

#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
    int t;
    cin >> t;
    while(t--){
        int a, b;
        cin >> a >> b;
        cout << __gcd(a, b);
    }
}

 =========================================================================

2.gcd(a.b)

在库numeric中提供了求最大公约数的方法,这是我提供的几种算法中最慢的,仅作扩展,如无必要,不要使用。使用方法直接就是gcd(a, b)。因此我建议各位在标记函数名称时,与此区别开来。

代码:

#include<iostream>
#include<numeric>
using namespace std;
int main()
{
    int t;
    cin >> t;
    while(t--){
        int a, b;
        cin >> a >> b;
        cout << gcd(a, b);
    }
}

六,位运算
利用位运算的特性,将两数交换改成位运算。
inline可加可不加。我实际试验中,在1e8次执行后,加与不加的时间差在80ms左右,而两者本来的运行时间均在3000ms上下,即差别不大

代码:

inline int gcd3(int a, int b)
{
    while(b ^= a ^= b ^= a %= b);    
    return a;
}

七,超快算法
利用取模特点,几乎与algorithm的时间一致

代码:

int gcd4(int a, int b){//超快
    if(!a || !b)
        return max(a, b);
    for(int t; t = a % b; a = b, b = t);
    return b;
}

讲了那么多,如果听懂了的话请点个赞再走吧QAQ

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值