Apriori算法学习笔记(三)

Apriori算法学习笔记(三)

Apriori算法的Python实现
from __future__ import print_function
import pandas as pd

# 频繁规则的产生
# 用于实现L_{k-1}到C_k的连接
def find_freq_set(x, ms):
    x = list(map(lambda i: sorted(i.split(ms)), x))
    l = len(x[0])
    r = []
    for i in range(len(x)):
        for j in range(i, len(x)):
            if x[i][:l - 1] == x[j][:l - 1] and x[i][l - 1] != x[j][l - 1]:
                r.append(x[i][:l - 1] + sorted([x[j][l - 1], x[i][l - 1]]))
    return r

# 寻找关联规则的函数
def find_rule(data, support, confidence, ms=u'--'):
    result = pd.DataFrame(index=['support', 'confidence'])  # 定义输出结果
    support_series = 1.0 * data.sum() / len(data)  # 支持度序列
    column = list(support_series[support_series > support].index)  # 初步根据支持度筛选
    k = 0
    while len(column) > 1:
        k = k + 1
        column = find_freq_set(column, ms)
        sf = lambda i: data[i].prod(axis=1, numeric_only=True)  # 新一批支持度的计算函数

        # 当数据集较大时,可以批量处理数据防止内存不足。
        data_2 = pd.DataFrame(list(map(sf, column)), index=[ms.join(i) for i in column]).T

        support_series_2 = 1.0 * data_2[[ms.join(i) for i in column]].sum() / len(data)  # 计算连接后的支持度
        column = list(support_series_2[support_series_2 > support].index)  # 新一轮支持度筛选
        support_series = support_series.append(support_series_2)
        column2 = []

        for i in column:  # 遍历可能的推理
            i = i.split(ms)
            for j in range(len(i)):
                column2.append(i[:j] + i[j + 1:] + i[j:j + 1])

        cofidence_series = pd.Series(index=[ms.join(i) for i in column2])  # 定义置信度序列

        for i in column2:  # 计算置信度序列
            cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))] / support_series[ms.join(i[:len(i) - 1])]

        for i in cofidence_series[cofidence_series > confidence].index:  # 置信度筛选
            result[i] = 0.0
            result[i]['confidence'] = cofidence_series[i]
            result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]

    result = result.T.sort(['confidence', 'support'], ascending=False)  
    return result
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值