Hadoop版本:Hadoop-2.6.0
<?xml version="1.0" encoding="UTF-8"?>
<!--Autogenerated by Cloudera Manager-->
<configuration>
<property>
#该参数限制输入文件数目,避免namenode出现元数据加载处理瓶颈。详细说明见“http://blog.csdn.net/fjssharpsword/article/details/70258251”
<name>mapreduce.job.split.metainfo.maxsize</name>
<value>10000000</value>
</property>
<property>
#该参数限制job调用counter不能超过120。
<name>mapreduce.job.counters.max</name>
<value>120</value>
</property>
<property>
#略过
<name>mapreduce.job.counters.groups.max</name>
<value>50</value>
</property>
<property>
#job输出是否需要压缩
<name>mapreduce.output.fileoutputformat.compress</name>
<value>false</value>
</property>
<property>
#job输出压缩的类型
<name>mapreduce.output.fileoutputformat.compress.type</name>
<value>BLOCK</value>
</property>
<property>
#参数控制job输出以何种压缩解码压缩
<name>mapreduce.output.fileoutputformat.compress.codec</name>
<value>org.apache.hadoop.io.compress.DefaultCodec</value>
</property>
<property>
#参数控制map输出以何种压缩解码压缩
<name>mapreduce.map.output.compress.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
<property>
#map输出是否压缩
<name>mapreduce.map.output.compress</name>
<value>true</value>
</property>
<property>
#zlib是一种压缩函数库
<name>zlib.compress.level</name>
<value>DEFAULT_COMPRESSION</value>
</property>
<property>
#参数控制map的spill文件最大归并数
<name>mapreduce.task.io.sort.factor</name>
<value>64</value>
</property>
<property>
#参数控制map的内存缓冲区的阀值率
<name>mapreduce.map.sort.spill.percent</name>
<value>0.8</value>
</property>
<property>
#参数控制reduce在shuffle时的线程数
<name>mapreduce.reduce.shuffle.parallelcopies</name>
<value>10</value>
</property>
<property>
#参数控制task读取输入文件或写入输出文件的超时,防止死循环。
<name>mapreduce.task.timeout</name>
<value>600000</value>
</property>
<property>
#参数控制HDFS副本数,将输入数据放入更多DT上,尽可能实现本地化计算。
<name>mapreduce.client.submit.file.replication</name>
<value>1</value>
</property>
<property>
#参数为job默认reduce数。
<name>mapreduce.job.reduces</name>
<value>8</value>
</property>
<property>
#参数为task的排序内存缓冲大小。
<name>mapreduce.task.io.sort.mb</name>
<value>512</value>
</property>
<property>
#参数控制map端是否并行。
<name>mapreduce.map.speculative</name>
<value>false</value>
</property>
<property>
#参数控制reduce端是否并行
<name>mapreduce.reduce.speculative</name>
<value>false</value>
</property>
<property>
#参数是是MapReduce编程模型中的一个参数,这个参数的含义是,当Map Task完成的比例达到该值后才会为Reduce Task申请资源,默认是0.05。
<value>0.8</value>
</property>
<property>
#参数是Hadoop一个自带的历史服务器的address。
<name>mapreduce.jobhistory.address</name>
<value>testslave01:10020</value>
</property>
<property>
#参数是Hadoop一个自带的历史服务器的WEB address。
<name>mapreduce.jobhistory.webapp.address</name>
<value>testslave01:19888</value>
</property>
<property>
#略过
<name>mapreduce.jobhistory.webapp.https.address</name>
<value>testslave01:19890</value>
</property>
<property>
#略过
<name>mapreduce.jobhistory.admin.address</name>
<value>testslave01:10033</value>
</property>
<property>
#参数是yarn在mapreduce运行的程序名。
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
#参数是提交任务的路径。
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/user</value>
</property>
<property>
#参数是Yarn为作业配置的重启AM的次数,若作业的重启次数超过该参数值,则不起作用。
<name>mapreduce.am.max-attempts</name>
<value>2</value>
</property>
<property>
#参数是Yarn启动AppMaster分配给AppMaster的默认内存大小。
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>1024</value>
</property>
<property>
#参数是MR ApplicationMaster占用的虚拟CPU个数。
<name>yarn.app.mapreduce.am.resource.cpu-vcores</name>
<value>1</value>
</property>
<property>
#参数是控制是否开启Uber运行模式。
<name>mapreduce.job.ubertask.enable</name>
<value>false</value>
</property>
<property>
#Java opts for the MR App Master processes。
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Djava.net.preferIPv4Stack=true -Xmx825955249</value>
</property>
<property>
#参数是map任务的jvm堆空间。
<name>mapreduce.map.java.opts</name>
<value>-Djava.net.preferIPv4Stack=true -Xmx1073741824</value>
</property>
<property>
#参数是reduce任务的jvm堆空间。
<name>mapreduce.reduce.java.opts</name>
<value>-Djava.net.preferIPv4Stack=true -Xmx1073741824</value>
</property>
<property>
#
<name>yarn.app.mapreduce.am.admin.user.env</name>
<value>LD_LIBRARY_PATH=$HADOOP_COMMON_HOME/lib/native:$JAVA_LIBRARY_PATH</value>
</property>
<property>
#Environment variables for the MR App Master processes for admin purposes
<name>mapreduce.map.memory.mb</name>
<value>5120</value>
</property>
<property>
#参数是每个Map Task需要的虚拟CPU个数
<name>mapreduce.map.cpu.vcores</name>
<value>1</value>
</property>
<property>
#参数是每个Reduce Task需要的内存量
<name>mapreduce.reduce.memory.mb</name>
<value>2048</value>
</property>
<property>
#参数是每个Reduce Task需要的虚拟CPU个数
<name>mapreduce.reduce.cpu.vcores</name>
<value>1</value>
</property>
<property>
#略过
<name>mapreduce.job.heap.memory-mb.ratio</name>
<value>0.8</value>
</property>
<property>
#参数是MP application的classpath。
<name>mapreduce.application.classpath</name>
<value>$HADOOP_MAPRED_HOME/*,$HADOOP_MAPRED_HOME/lib/*,$MR2_CLASSPATH</value>
</property>
<property>
#略过
<name>mapreduce.jobhistory.jhist.format</name>
<value>binary</value>
</property>
<property>
#略过
<name>mapreduce.admin.user.env</name>
<value>LD_LIBRARY_PATH=$HADOOP_COMMON_HOME/lib/native:$JAVA_LIBRARY_PATH</value>
</property>
<property>
#略过
<name>mapreduce.job.redacted-properties</name>
<value>fs.s3a.access.key,fs.s3a.secret.key</value>
</property>
</configuration>