如何建立数据分析的思维框架

本文探讨了如何建立数据分析思维,强调了数据证明而非直觉的重要性。文章建议通过建立指标体系来衡量业务,理解并使用核心驱动指标,避免虚荣指标、后验性指标和复杂性指标。同时,介绍了维度分析法,展示如何通过不同维度组合进行数据模型构建,以对比和分析数据。数据分析的目标是驱动业务增长,并需要反馈和验证来确保效果。
摘要由CSDN通过智能技术生成

曾经有人问过我,什么是数据分析思维?如果分析思维是一种结构化的体现,那么数据分析思维在它的基础上再加一个准则:

不是我觉得,而是数据证明

这是一道分水岭,“我觉得”是一种直觉化经验化的思维,工作不可能处处依赖自己的直觉,公司发展更不可能依赖于此。数据证明则是数据分析的最直接体现,它依托于数据导向型的思维,而不是技巧,前者是指导,后者只是应用。

作为个人,应该如何建立数据分析思维呢?

建立你的指标体系

在我们谈论指标之前,先将时间倒推几十年,现代管理学之父彼得·德鲁克说过一句很经典的话:

如果你不能衡量它,那么你就不能有效增长它。

所谓衡量,就是需要统一标准来定义和评价业务。这个标准就是指标。假设隔壁老王开了一家水果铺子,你问他每天生意怎么样,他可以回答卖的不错,很好,最近不景气。这些都是很虚的词,因为他认为卖的不错也许是卖了50个,而你认为的卖的不错,是卖了100。

这就是“我觉得”造成的认知陷阱。将案例放到公司时,会遇到更多的问题:若有一位运营和你说,产品表现不错,因为每天都有很多人评价和称赞,还给你看了几个截图。而另外一位运营说,产品有些问题,推的活动商品卖的不好,你应该相信谁呢?

其实谁都很难相信,这些众口异词的判断都是因为缺乏数据分析思维造成的。

老王想要描述生意,他应该使用销量,这就是他的指标,互联网想要描述产品,也应该使用活跃率、使用率、转化率等指标。

如果你不能用指标描述业务,那么你就不能有效增长它。

了解和使用指标是数据分析思维的第一步,接下来你需要建立指标体系,孤立的指标发挥不出数据的价值。和分析思维一样,指标也能结构化,也应该用结构化。

我们看一下互联网的产品,一个用户从开始使用到离开,都会经历这些环节步骤。电商APP还是内容平台,都是雷同的。想一想,你会需要用到哪些指标?

普通的用户生命周期

而下面这张图,解释了什么是指标化,这就是有无数据分析思维的差异,也是典型的数据化运营,有空可以再深入讲这块。

到底数据分析体系是什么?似乎经常看到的,只有AARRR五个字母,又语焉不详。到底怎样才算是建了个体系?今天我们系统解答一下。 本文为细心整理的.md笔记,做了摘记概括。 **搭建数据分析体系常犯错误**是丢失重点、目标,陷入指标细节;贪大求全的使用同一套指标而不加以区分职责。 **数据分析要旨**在于解释数据背后的业务含义,找到**对业务有用的价值点**。 **数据分析体系**能**更有效率**的支持业务,把数据报表、专题报表串起来,有层次展现,应用到业务中。**有节奏、有主次、有顺序的展现**数据。 **搭建数据分析体系的基本思路**: 明确服务对象即针对的需求方负责人; 明确工作目标,量化目标,可以计算目标和现状的差距; 监督业务走势,发现问题苗头; 了解业务行动,分解业务细节,找到数据可以帮助的价值点; 行动之后,复盘行动结果,事后总结出普遍的经验。优秀的业务能力永远稀缺,不可复制。复盘的意义:把明显的作死行为总结出来,避免普通人犯错。 **数据分析体系不是一成不变,也需要迭代升级,提升专业水准的要求**:坚守目标,迭代方法,积累经验。固定通用产品、临时个体专题。 **回到出发点,重视业务需求**:从业务中来,到业务中去;用专业的方法服务个性化需求 ### 精彩段子: **数据的优势,不是直接生产出超人的创意,而是事后总结出普遍的经验**。**优秀的业务能力永远是稀缺资源,是不可复制的**。但通过数据分析复盘,可以**把明显的作死行为总结出来,避免普通人犯错**。 **数据的作用:长期积累的业务方经验,(基于普遍意义)为遇到的问题提供思路。** **做业务从来不怕失败,怕的是败的不明不白**。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值