不来也不去的一只失忆蝴蝶

曾迷途才怕追不上满街赶路人

排序:
默认
按更新时间
按访问量

[2017集训队作业自选题#148]Simple Summation Problem

题目大意定义一个积性函数F。 若p为质数,F(pd)=pd−[d mod p!=0]F(p^d)=p^{d-[d\ mod\ p!=0]} 求F的前缀和。做法令G=F∗μG=F*\mu,那么G也是一个积性函数。 那么容易得到G(pd)=pd−[d mod p!=0]−pd−1−[(d−1) ...

2017-12-21 21:20:48

阅读数:269

评论数:0

Psy

题目大意一个字符集为0~9的长度为n的数字串,f(n)为其本身的字典序在所有后缀中是严格最小的字符串的数量。 求∑ni=1f(i)∗i2\sum_{i=1}^nf(i)*i^2结论我们发现一个有周期的串的本身不可能是严格最小后缀。 对于没有周期的串,当做循环串来看,可以转出n个不同的字符串,一...

2017-11-23 15:32:20

阅读数:357

评论数:0

[LibreOJ β Round #4]求和

题目大意∑ni=1∑mj=1μ2((i,j))\sum_{i=1}^n\sum_{j=1}^m\mu^2((i,j))反演∑ni=1μ(i)∗∑n/id=1μ2(d)∗(n/id)∗(m/id)\sum_{i=1}^n\mu(i)*\sum_{d=1}^{n/i}\mu^2(d)*(n/id)*(...

2017-09-04 22:40:58

阅读数:273

评论数:0

[hdu6063]RXD and math

题目大意给你一个数学式子,要求计(zhao)算(chu)出(jie)来(lun)。显然任意数可唯一表示成a^2*b,其中μ(b)=1\mu(b)=1 式子相当于在枚举b,后面乘的系数是a的范围。 那么每个数都被算一次,答案是n^k。#include<cstdio> #include...

2017-08-21 16:12:16

阅读数:245

评论数:0

质数

题目大意设f(i)表示i的不同质因子数量。 求∑ni=12f(i)\sum_{i=1}^n2^{f(i)} n<=10^12推式子我知道你可能会推出一个看起来是n5/6n^{5/6}实际是n2/3n^{2/3}的方法,但肯定还是不能过的,大概能跑10^11这个级别。 首先把式子变成 ...

2017-08-13 22:23:46

阅读数:190

评论数:0

容斥的原理及广义应用

容斥原理想起容斥原理,大家都不陌生。 相信很多地方都会举这样类似一个最简单的例子让大家理解容斥: 现在赛场上有n个人,都参加过WC、CTSC和APIO。 拿过至少一个比赛的金牌的有多少人? 我们可以简单计算拿过WC金牌的人数+拿过CTSC的金牌的人数+拿过APIO的金牌的人数。 但是这样...

2017-07-07 16:30:35

阅读数:1066

评论数:1

[51nod1355]斐波那契的最小公倍数

题目大意求n个斐波那契数的最小公倍数。做法首先斐波那契数列有性质(fn,fm)=f(n,m)(f_n,f_m)=f_{(n,m)} 具体证明不证了,烂大街的性质了。 构造数列g满足 fn=Πd|ngdf_n=\Pi_{d|n}g_d 可以用莫比乌斯反演求出g gn=Πd|nfμ(nd)d...

2017-06-25 22:33:29

阅读数:300

评论数:0

[bzoj4815][CQOI2017]小Q的表格

题目描述小Q是个程序员。 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理。每当小Q不知道如何解决 时,就只好向你求助。为了完成任务,小Q需要列一个表格,表格有无穷多行,无穷多列,行和列都从1开始标号。 为了完成任务,表格里面每个格子都填了一个整数,为了方便描...

2017-06-16 17:12:32

阅读数:419

评论数:0

[JZOJ5134][SDOI省队集训2017]三元组

题目大意求∑ai=1∑bj=1∑ck=1[(i,j)=1][(i,k)=1][(j,k)=1]\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c[(i,j)=1][(i,k)=1][(j,k)=1]推式子首先假设a<=b<=c。 第一步转化为 ∑ai=1∑bj...

2017-06-09 21:24:28

阅读数:401

评论数:0

[bzoj4816][SDOI2017]数字表格

题目描述Doris刚刚学习了fibonacci数列。用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)],其中gcd(i,j)...

2017-04-19 22:38:09

阅读数:453

评论数:0

统计

题目描述给定n,k,求满足一下条件的整数数组a[]的数量: 1.a[]中共有k个元素; 2. a[i] ∈ [1,n]; 3. ∀i∈[1,k),a[i]≤a[i+1]; 4、gcd(a1,a2…ak)=1 答案可能很大,请mod(109+7)后输...

2017-04-18 10:41:30

阅读数:169

评论数:0

[bzoj4305]数列的gcd

题目描述给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N)。 现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], …, b[N],满足: (1)1<=b[i]<=M(1<=i<=N); (...

2017-02-16 17:27:11

阅读数:365

评论数:0

[51nod 1222]最小公倍数计数

题目大意求有多少对a和b满足a<=b且l<=[a,b]<=r数论题区间[l,r]答案等于[1,r]-[1,l-1] a<=b暂且不考虑。为了方便,接下来都不写下取整,出现除法即为整除。 ∑ni=1∑nj=1[ij(i,j)<=n]\sum_{i=1}^n\sum_...

2017-01-17 22:35:51

阅读数:438

评论数:0

[51nod 1594]Gcd and Phi

题目大意求所有(i,j)满足1<=i<=n和1<=j<=n,phi(i)和phi(j)的gcd的欧拉函数值和。数论题挺简单的。 枚举gcd然后莫比乌斯反演一波。 接下来的式子中需要用到的均能够进行n log n预处理。 式子不太想写了, 可以看看代码。#include...

2016-12-12 22:13:32

阅读数:340

评论数:0

[51nod 1223]分数等式的数量

题目大意有这样一个分数等式:1/X + 1/Y = 1/N,(X,Y,N > 0)。给出L,求有多少满足X < Y <= L的等式。 例如:L = 12,满足条件的等式有3个,分别是:1/3 + 1/6 = 1/2, 1/4 + 1/12 = 1/3, 1/6 + 1/12 =...

2016-12-12 22:10:45

阅读数:349

评论数:0

[51nod 1375]再选数

题目描述从前有n个正整数,我们令它为a[1]到a[n]。现在要从选出恰好k个数(如果k=-1则为选任意个数,但是至少选一个),要求这些数的最大公约数是1,问有多少种方案? 答案可能很大,模998,244,353输出。搞一发可以设f[x]表示选出恰好k个数gcd为x的方案数。 设g[x]表示选出...

2016-12-08 17:34:34

阅读数:261

评论数:0

太阳神

题目描述太阳神拉很喜欢最小公倍数,有一天他想到了一个关于最小公倍数的题目。 求满足如下条件的数对(a,b)对数:a,b均为正整数且a,b<=n而lcm(a,b)>n。其中的lcm当然表示最小公倍数。答案对1,000,000,007取模推式子我们先做个补集转化。 然后就是统计这样的三...

2016-11-09 21:14:45

阅读数:1187

评论数:0

求和

题目描述推一下∑i=1n∑j=1mμ(i)∗μ(j)∗∑d|ijd\sum_{i=1}^n\sum_{j=1}^m\mu(i)*\mu(j)*\sum_{d|ij}d 对于每一个d|ij,一定可以把d拆成d=ab满足a|i且b|j,我们可以考虑枚举a和b。因为一个d有多种拆法,为了避免重复,需保...

2016-07-07 20:01:00

阅读数:240

评论数:0

[bzoj2818]gcd

题目大意求∑i=1n∑j=1n(i,j)是质数\sum_{i=1}^n\sum_{j=1}^n(i,j)是质数有趣方法很容易想到莫比乌斯反演啦,但本弱智打了另外的弱智方法。 我们知道对于j<ij<i,若有(i,j)=1,那么就有(i*k,j*k)=k。 也就是说只要k是质数就可以算...

2016-05-30 20:34:40

阅读数:493

评论数:2

[bzoj2440][zsoi2011]完全平方数

题目大意找到从小到大第k个不含有平方因子的数。二分答案+容斥原理首先我们可以很容易想到二分答案,然后转化为一个判定性问题。 那么现在要解决的是如何求1~n内有多少不含平方因子的数。 可以想到容斥原理。 即ans=∑(−1)i∗n以内含有至少i个平方因子的数ans=\sum(-1)^i*n以内...

2016-04-13 21:26:59

阅读数:491

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭