当前搜索:

[TCO2014 3B]OnePointNineNine

题目大意现在平面上有n个点,已知有一个常数D。 任意两点的距离要么<=D,要么>=1.99D。 请问有多少点集的子集,满足任意两点距离>=1.99D。n<=1000。解法我们肯定是把距离<=D的点对连边。然后相当于独立集计数。 可以考虑把等价点缩在一起: 两个...
阅读(28) 评论(0)

[2017集训队作业自选题#124]Path

题目大意给定 n 和 ai, 满足 a0≥a1≥⋯an−1≥0, 求出在 n 维空间中从 (0,0,…,0) 走到 (a0,a1,…,an−1), 每一步使某一维坐标增加 1 的方案中随机选出一种, 满足经过的所有点 (x0,x1,…,xn−1) 都满足 x0≥x1≥⋯≥xn−1 的概率. 答案模...
阅读(215) 评论(0)

[hdu6042]Journey with Knapsack

题目大意Rosemary有一个容积为2n的背包,还有n种物品,第i种物品的容积为i,有ai个,保证a是非负整数且递增(即ai>=0a_i>=0,ai<ai+1a_i<a_{i+1})。 现在lihua摆出了m个装备帮助Rosemary完成他的旅行,第i个装备的容积为bi,...
阅读(149) 评论(0)

[CF891E]Lust

题目大意一个序列a,做k次下列操作: 1、随机一个下标x,答案加上Πni=1,i!=xai\Pi_{i=1,i!=x}^na_i 2、将axa_x减一。 求答案的期望。做法设bib_i表示最终aia_i减少了多少次。 答案是Πni=1ai−Πni=1(ai−bi)\Pi_{i=1}^na_...
阅读(457) 评论(0)

组合和

题目大意求∑ni=1Cm(i,n)\sum_{i=1}^nC_{(i,n)}^m做法随手化一下式子变成 ∑d|nCmd∗ϕ(nd)\sum_{d|n}C_{d}^m*\phi(\frac{n}{d}) 发现很想狄利克雷卷积的形式,不妨尝试凑出另一个积性函数。 1m!∑d|n∑mi=0s(m,...
阅读(258) 评论(0)

[agc007c]Pushing Balls

题目大意不想讲。做法发现期望距离序列d始终是个等差序列。#include<cstdio> #include<algorithm> #define fo(i,a,b) for(i=a;i<=b;i++) using namespace std; typedef doub...
阅读(218) 评论(0)

子串

题目描述SA题朴素大概要个很高的复杂度。 想一个高端一点的暴力,可以只枚举两个后缀,对于这两个后缀任意前缀之间lcp可以列出数学式子,这个式子与这两个后缀的长度以及它们的lcp长度有关。 接下来我们知道lcp等于一段区间height的最小值。 因此写个sa,然后根据height建立笛卡尔树。...
阅读(275) 评论(0)

[bzoj4671]异或图

题目描述定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1…s, 设 S = {G1, G2, … , Gs...
阅读(872) 评论(2)

[bzoj4827]gift

题目描述FFT首先可以看做第二个+c,这个c可以为负数。 把第二个倍长。 拆式子容易发现。 需要求出∑n−1i=0∑n−1j=0a[i]∗b[i+j]\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}a[i]*b[i+j] 的最小值 求出这个剩余部分是关于c的二次函数,用初...
阅读(436) 评论(0)

[luoguP3598]Koishi Loves Number Theory

题目大意第i个数是xai+1−1x−1\frac{x^{ai+1}-1}{x-1} 求n个数的lcm结论(xn−1,xm−1)=x(n,m)−1(x^n-1,x^m-1)=x^{(n,m)}-1 可以用辗转相除法来证明。 (xn−1,xm−1)=(xn−xm,xm−1)=(xm∗(xn−m−...
阅读(284) 评论(0)

[51nod1187]寻找分数

题目大意求整数p和q使得a/b<q/p<c/da/b<q/p<c/d且p最小类欧一个显然的结论最小化分子或分母都是对的。 首先如果a>=b,显然可以先减去几个整数变成真分数。 那么如果a<ba<b呢? ab<qp<cd\frac{a}{b...
阅读(218) 评论(0)

序列

题目大意随机序列a。 a0=0。 ai以pi%为ai-1再加1,否则为0。 求序列和的平方的期望。DP设fi表示1~i的和的平方期望,gi则表示和的期望。 根据(a+b)^2=a^2+b^2+2ab fi=∑i−1j=−1(fj+s2[i−j−1]+2∗gj∗s1[i−j−1])∗(1−...
阅读(225) 评论(0)

[bzoj4722]由乃

题目描述由于一周目的由乃穿越到了三周目,并带来了巨大的影响,改变了三周目所有未来日记所有者的命运所以三周目的 神Deus准备不利用未来日记来决定把神的位置交给谁Deus特别崇拜某知名社会主义国家领导人,因为他的寿命比神 还长,所以他想钦定下一个卡密,而不通过选举他决定钦定三周目的由乃成为卡密,...
阅读(694) 评论(1)

[51nod 1333]无聊的数学家

题目描述http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1333做法很有趣的题目。 首先,怎么知道对方无法100%猜中? 考虑对方什么时候100%猜中。显然是拿了个质数。 因此和S一定不可以被表示成质数+1,不然对方...
阅读(232) 评论(0)

类欧几里得算法小结

基本定义f(a,b,c,n)=∑ni=0⌊ai+bc⌋f(a,b,c,n)=\sum_{i=0}^n\lfloor\frac{ai+b}{c}\rfloor g(a,b,c,n)=∑ni=0i⌊ai+bc⌋g(a,b,c,n)=\sum_{i=0}^ni\lfloor\frac{ai+b}{c}...
阅读(2092) 评论(3)

[bzoj4401]块的计数

题目大意给定一颗树,对树进行树分块使得每块点数相同,求方案数TLE算法容易观察出,假如块大小定了,那么至多只有一种方案。 怎么分块呢?设size[x]表示x子树中还未被分块的节点数量。 像普通size一样求。 退出x时,如果size[x]=c即块大小,那么可以形成一块,size[x]清0。 ...
阅读(353) 评论(0)

多边形序列70分

题目描述猜结论我们猜测如果出现相邻的两个R(注意第一个和最后一个是R也算),那么就一定不合法。同时,一个合法的序列还要能够组成直角多边形。 假设序列有x个L,y个R 90x+270y=180(n-2)且x+y=n 解得x=n/2+2,y=n/2-2 所以n为奇数是GG的,n为偶数时L与R的...
阅读(274) 评论(0)

[51nod 1537]分解

题目大意是否存在整数m使得(1+√2)n=√m+√(m−1)(1+√2)^n=√m+√(m-1)结论首先n=1存在解。 假设n=k时存在解,易证n=k+1也必然存在解。 于是设(1+√2)n=an+bn√2(1+√2)^n=an+bn√2 a与b可以用矩阵乘法快速算出,再分类讨论n的奇偶性得...
阅读(483) 评论(0)

地下的太阳

题目描述结论显然对于e数组只需要知道最后一行,很容易得到结论: 我们需要知道前m-1行所有数的和,设为t,那么e[m][i]=n∗im+te[m][i]=n*i^m+t 如何计算t呢? 对于计算前i行的和,假设已经知道前i-1行的和为t,现在计算t’。 显然t′=t∗n+∑nj=1jit'...
阅读(339) 评论(0)

Jason做奥数

前言富榄好劲啊!题目大意TL做法为了方便,下面的L都用M代替。 显然可以分开每个质数来讨论。 枚举一个pcp^c,所带了的贡献是(pc)(m−⌊mpc+1⌋)n−(m−⌊mpc⌋)n(p^c)^{(m-\lfloor\frac{m}{p^{c+1}}\rfloor)^n-(m-\lfloor\...
阅读(279) 评论(0)
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 39万+
    积分: 1万+
    排名: 1457
    最新评论
    文章分类