不来也不去的一只失忆蝴蝶

曾迷途才怕追不上满街赶路人

[2017集训队作业自选题#124]Path

题目大意

给定 n 和 ai, 满足 a0≥a1≥⋯an−1≥0, 求出在 n 维空间中从 (0,0,…,0) 走到 (a0,a1,…,an−1), 每一步使某一维坐标增加 1 的方案中随机选出一种, 满足经过的所有点 (x0,x1,…,xn−1) 都满足 x0≥x1≥⋯≥xn−1 的概率. 答案模 1004535809 输出.

结论

先转化题意:有一个高度为m的表格,第i行有ai个格子,ai不上升,假设ai的和为n,现在将1~n填入其中,使得每一行每一列的数字都递增,求方案数。
这个问题是Young Tableau,有一个结论:
设第i行第j列的格子为(i,j),从一个格子可以走到往右一格或往下一格的相邻格子。
设h(i,j)表示从(i,j)可以到达的格子总数(包括自己)。
方案数为n!h(i,j)
考虑求分母。

做法

设多一个第m+1行,格子数为0。
容易列出式子为

i=1mk=i+1m+1j=ak+1ak1(aij+ki)

=i=1mk=i+1m+1(aiak1+ki)!(aiak11+ki)!

=i=1m(ai+mi)!mk=i+1(aiak+ki)

=i=1m(ai+mi)!i<k1(aii)(akk)

右边部分可以使用NTT计算贡献。

#include<cstdio>
#include<algorithm>
#include<cmath>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
typedef double db;
const int maxlen=3000000+10,mo=1004535809,GG=3;
int rev[maxlen],w[maxlen],tt[maxlen],a[maxlen],b[maxlen],c[maxlen],fac[maxlen];
int i,j,k,l,t,n,m,len,ni,ans,mx;
db ce;
int qsm(int x,int y){
    if (!y) return 1;
    int t=qsm(x,y/2);
    t=(ll)t*t%mo;
    if (y%2) t=(ll)t*x%mo;
    return t;
}
void prepare(){
    ni=qsm(len,mo-2);
    fo(i,0,len-1){
        int p=0;
        for(int j=0,tp=i;j<ce;j++,tp/=2) p=(p<<1)+(tp%2);
        rev[i]=p;
    }
    w[0]=1;
    w[1]=qsm(GG,(mo-1)/len);
    fo(i,2,len) w[i]=(ll)w[i-1]*w[1]%mo;
}
void DFT(int *a,int sig){
    int i;
    fo(i,0,len-1) tt[rev[i]]=a[i];
    for(int m=2;m<=len;m*=2){
        int half=m/2,bei=len/m;
        fo(i,0,half-1){
            int wi=sig>0?w[i*bei]:w[len-i*bei];
            for(int j=i;j<len;j+=m){
                int u=tt[j],v=(ll)tt[j+half]*wi%mo;
                tt[j]=(u+v)%mo;
                tt[j+half]=(u-v)%mo;
            }
        }
    }
    if (sig==-1)
        fo(i,0,len-1) tt[i]=(ll)tt[i]*ni%mo;
    fo(i,0,len-1) a[i]=tt[i];
}
void NTT(){
    DFT(b,1);DFT(c,1);
    fo(i,0,len-1) b[i]=(ll)b[i]*c[i]%mo;
    DFT(b,-1);
}
int main(){
    scanf("%d",&m);
    fo(i,1,m){
        scanf("%d",&a[i]);
        n+=a[i];
    }
    mx=max(a[1],2*m);
    mx=max(mx,a[1]+m);
    fac[0]=1;
    fo(i,1,mx) fac[i]=(ll)fac[i-1]*i%mo;
    ans=1;
    fo(i,1,m) ans=(ll)ans*fac[a[i]+m-i]%mo;
    mx=max(a[1],m);
    len=1;
    while (len<=4*mx) len*=2;
    ce=log(len)/log(2);
    prepare();
    fo(i,1,m){
        t=a[i]-i+mx;
        b[t]++;
        t=i-a[i]+mx;
        c[t]++;
    }
    NTT();
    fo(i,2*mx+1,len-1){
        (b[i]+=mo)%=mo;
        t=i-2*mx;
        t=qsm(t,mo-2);
        t=qsm(t,b[i]);
        ans=(ll)ans*t%mo;
    }
    ans=qsm(ans,mo-2);
    fo(i,1,m) ans=(ll)ans*fac[a[i]]%mo;
    (ans+=mo)%=mo;
    printf("%d\n",ans);
}
阅读更多
版权声明:本文是蒟蒻写出来的,神犇转载也要说一声哦! https://blog.csdn.net/WerKeyTom_FTD/article/details/79032667
想对作者说点什么? 我来说一句

ioi2018集训队作业1

2017年12月26日 14.5MB 下载

集训队作业

2013年01月14日 214KB 下载

没有更多推荐了,返回首页

不良信息举报

[2017集训队作业自选题#124]Path

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭