数据结构与算法(二):时间复杂度和空间复杂度

算法效率的度量方法:

  1. 算法采用的策略、方案
  2. 编译产生的代码质量
  3. 问题的输入规模
  4. 机器执行指令的速度

由此可见,抛开计算机硬件,一个程序的运行时间依赖于算法的好坏和输入规模。

int i,sum=0,n=100;
for(i=1;i<=n;i++)
{	
	sum=sum+i;
}
printf("%d",sum);
int i,sum=0,n=100;
sum=(i+n)*n/2;
printf("%d",sum);

例如上一讲中提到了1-100之间求和,两种算法其实就是n和1的差距。
我们研究算法的复杂度,侧重的是研究算法随着输入规模扩大增长量的一个抽象,而不是精确的定位需要执行多少次。
我们不关心语言、环境等,只关心它所实现的算法。
我们在分析一个算法的运行时间时,重要的是把基本操作的数量和输入模式关联起来

做一个测试:两个算法的输入规模都是n,A需要执行2n+3次,b需要执行3n+1次,那哪一个更快些呢?
算法比较
从这张表可以看出,n=1时,A算法不如B算法,随着n的增长,A算法开始反超,总体来讲算法A比B更优秀

算法时间复杂度

算法时间复杂度的定义:
(1)时间频度: 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度: 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
一般情况下,随着输入规模n的增大,T(n)增长最慢的算法为最优算法

显然,利用时间复杂度,可以算出我们的两个求和算法的时间复杂度分别为O(1),O(n)。

推导方法:

  • 用常数1取代运行中的所有加法函数
  • 在修改后的运行次数函数中,只保留最高阶项
  • 如果最高阶项存在且不是1,则去除与这个项相乘的常数
  • 得到的最后结果就是O的阶数
常数阶:

这里举一个例子

int sum=0,n=100;
printf("Hello World!");
printf("Hello World!");
printf("Hello World!");
printf("Hello World!");
printf("Hello World!");
printf("Hello World!");
printf("Hello World!");
printf("Hello World!");
sum = (1+n)*n/2;

这里的时间复杂度并不是O(8),而是O(1),因为printf的次数并不随着时间规模的增大而增大。

线性阶

一般含有非嵌套循环涉及线性阶,随着n的增大,对应计算次数呈直线增长。例如

int i,sum=0,n=100;
for(i=1;i<=n;i++)
{	
	sum=sum+i;
}

时间复杂度为O(n)。

平方阶

对于嵌套的循环,例如:

int i,j,n=100;
for(i=1;i<=n;i++)
{	for(j=0;j<n;j++)
    {
    	printf("Hello,World");
    }
}

时间复杂度为O(n)。

对数阶

我们看下这个程序:

int i=1,n=100;
while(i<n)
{
	i=i*2;
}
}

每次循环,i*2,离n更近一步,假设有x个2相乘后大于等于n,就会退出循环
于是由2^x=n得到x=Log2n,所以这个程序的时间复杂的为O(logn)。

n++;   
function(n);
for(i=0;i<n;i++)
{
	function(n);
}
for(i=0;i<n;i++)
{
	for(j=i;j<n;j++)
	{
		printf("%d\n",j);
	}
}

上述代码的时间复杂度为O(n^2);

常见的时间复杂度

例子时间复杂度类型
5201314O(1)常数阶
3n+4O(n)线性阶
3n^2+4n+5O(n^2)平方阶
3log2n+4O(logn)对数阶
2n+3nlog2n+14O(nlogn)nlogn阶
n^3 +2n^2+4n+6O(n^3)立方阶
2^nO(2^n)指数阶

常用的时间复杂度所耗费的时间从小到大依次是:

O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)
< O(n3)<O(2n)<O(n!)<O(n^n)

所以说,算法分析中,我们查找一个有n个随机数数组中的某个数字,最好的情况是第一个数字就是,那么时间复杂度就是O(1),但也有可能在这最后一个位置,就是O(n)。
平均运行时间是期望的运行时间
最坏运行时间是一种保证。在应用中,这是一种最重要的需求,通常除非特别指定,我们提到的运行时间都是指最坏情况的运行时间

算法的空间复杂度

首先我们要明白,我们在写代码时,完全可以用空间来换取时间。
举个例子,判断某一年是否为闰年,我们可以实现要给算法,每给一个年份,都会通过算法计算得到是否是闰年的结果。
另一种算法就是,建立一个数组,将所有年份按下标的数字对应,如果是闰年,则此数组元素对应的值为1,否则为0.
对比两个算法,第一种算法很明显节约空间,但是每一次查询都需要进行运算,而第二种算法,虽然在内存中存了几千个数组,但是每次查询只需要一次索引即可。
这就是典型的空间换时间

算法的空间复杂度通过计算算法所需的存储空间实现,算法的空间复杂度的计算公式为:
S(n)=O(f(n)),其中,n为问题的规模,F(n)为语句关于n所存储空间的函数。
通常,我们都是用"时间复杂度"来指运行时间的需求,是用"空间复杂的"值空间需求。
当直接要求我们求“复杂度”时,通常是指时间复杂度
显然,对时间复杂度的追求更属于算法的潮流。

  • 9
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值