评估指标:精确率,召回率,F1_score,ROC,AUC
分类算法评估标准详解
分类准确度并不能够评估所有的场景,展示的结果也比较片面,这时候就需要其他的评估方法来进行测量评估。
所以接下来介绍一些其他的评估标准,将从以下5个方面来介绍:
混淆矩阵
精准率和召回率
F1 Score
ROC曲线
AUC
一、混淆矩阵(Confusion Matrix)
对于二分类问题,所有的问题分为0和1两类,混淆矩阵是2*2的矩阵:
TP:真实值是1,预测值是1,即我们预测是positive,预测正确了。
FN:真实值是1,预测值是0,即我们预测是negative,但预测错误了
原创
2020-07-01 20:13:50 ·
1944 阅读 ·
0 评论