评估指标:精确率,召回率,F1_score,ROC,AUC

分类算法评估标准详解

分类准确度并不能够评估所有的场景,展示的结果也比较片面,这时候就需要其他的评估方法来进行测量评估。
所以接下来介绍一些其他的评估标准,将从以下5个方面来介绍:

混淆矩阵
精准率和召回率
F1 Score
ROC曲线
AUC

一、混淆矩阵(Confusion Matrix)

对于二分类问题,所有的问题分为0和1两类,混淆矩阵是2*2的矩阵:
在这里插入图片描述
TP:真实值是1,预测值是1,即我们预测是positive,预测正确了。
FN:真实值是1,预测值是0,即我们预测是negative,但预测错误了。
FP:真实值是0,预测值是1,即我们预测是positive,但是预测错误了。
TN:真实值是0,预测值是0,即我们预测是negative,预测正确了。

例如现在有个癌症预测系统,假设对于1万人进行检测,根据混淆矩阵得出结果入下:
对于1万个人中,有9978个人本身并没有癌症,我们的算法也判断他没有癌症;
有12个人本身没有癌症,但是我们的算法却错误地预测他有癌症;
有2个人确实有癌症,但我们算法预测他没有癌症;
有8个人确实有癌症,而且我们也预测对了。

混淆矩阵得出的结果更为全面。
在这里插入图片描述

二、精准率和召回率

精准率:
在这里插入图片描述
即:精准率为8/(8+12)=40%

精准率就是测量出,预测正确的个数占所有预测成positive情况的比例

一句话:预测值为1,且预测对了的比例

召回率
在这里插入图片描述
即:精准率为8/(8+2)=80%

召回率是:所有真实值为1的数据中,预测对了的个数

三、F1 Score

精准率和召回率是有效的评估方式,但是根据场景不同应该将评估的重点放在不同的方面。
为了取得一个平衡,使用一个新的指标F1 Score

概念介绍
F1 Score是精准率和召回率的调和平均值

调和平均值的特点是如果二者极度不平衡,如某一个值特别高、另一个值特别低时,得到的F1 Score值也特别低;只有二者都非常高,F1才会高。这样才符合我们对精准率和召回率的衡量标准。

四、ROC曲线

分类阈值:设置判断样本为正例的阈值thr
如果某个逻辑回归模型对某封电子邮件进行预测时返回的概率为 0.9995,则表示该模型预测这封邮件非常可能是垃圾邮件。相反,在同一个逻辑回归模型中预测分数为 0.0003 的另一封电子邮件很可能不是垃圾邮件。可如果某封电子邮件的预测分数为 0.6 呢?为了将逻辑回归值映射到二元类别,您必须指定分类阈值也称为判定阈值)。如果值高于该阈值,则表示“垃圾邮件”;如果值低于该阈值,则表示“非垃圾邮件”。人们往往会认为分类阈值应始终为 0.5,但阈值取决于具体问题,因此您必须对其进行调整。

精准率随着threshold阈值的增加而减低,recall随着阈值的增大而减小。

TPR: 预测为1,且预测对了的数量,占真实值为1的数据百分比,这个就是召回率
FPR: 预测为1,但预测错了的数量,占真实值不为1的数据百分比
TPR和FPR呈正比关系,ROC曲线就是描述这两个关系的曲线。

ROC曲线
ROC(Receiver Operation Characteristic Curve),横轴是FPR, 纵轴是TPR.
TPR就是所有正例中,有多少被正确地判定为正;
FPR是所有负例中,有多少被错误地判定为正。

分类阈值会影响TPR和FPR的取值,理想状态下,希望TPR = 1, FPR = 0,这个是不可能实现的,所以需要找一个合适的分类阈值来保证成功预测比例比较大。

ROC曲线距离左上角越近,证明分类器效果越好。如果一条算法1的ROC曲线完全包含算法2,则可以断定性能算法1>算法2。这很好理解,此时任做一条 横线(纵线),任意相同TPR(FPR) 时,算法1的FPR更低(TPR更高),故显然更优。

很多时候两个分类器的ROC曲线交叉,无法判断哪个分类器性能更好,这时可以计算曲线下的面积AUC,作为性能度量

五、AUC

AUC(Area Under Curve)指的是ROC曲线下面的面积,纵轴和横轴范围都是(0,1),所以总面积小于1。

ROC曲线下方由梯形组成,矩形可以看成特征的梯形。因此,AUC的面积可以这样算:(上底+下底)* 高 / 2,曲线下面的面积可以由多个梯形面积叠加得到。AUC越大,分类器分类效果越好。

AUC = 1,是完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
AUC = 0.5,跟随机猜测一样,模型没有预测价值。
AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。

编程实现

手动实现混淆矩阵,精准率和召回率,f1分值,ROC曲线,AUC

import pandas as pd
‘’‘处理二维矩阵’’’
df = pd.DataFrame([
[0,1],[1,1],[2,1],[3,-1],[4,-1],
[5,-1],[6,1],[7,1],[8,1],[9,-1]
])
X = df.iloc[:,[0]]
Y = df.iloc[:,-1]

‘’‘用逻辑二分类’’’
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, Y)

精准率:
from sklearn.metrics import precision_score
print(“精准率为:”,precision_score(Y,model.predict(X)))

结果:
0.6

召回率
from sklearn.metrics import recall_score
print(“召回率为:”,recall_score(Y,model.predict(X)))

结果:
1.0

混淆矩阵
from sklearn.metrics import confusion_matrix
print(confusion_matrix(Y, model.predict(X)))

结果:
array([[0 4]
[0 6]],dtype=int64)

f1_score分值
from sklearn.metrics import f1_score
print(“f1_score为:”,f1_score(Y,model.predict(X)))

结果:
0.7499999999999999

AUC
from sklearn.metrics import roc_auc_score
print(‘AUC:’, roc_auc_score(Y, model.predict_proba(X)[:, -1:]))

结果:
AUC: 0.625

ROC曲线
import matplotlib.pyplot as plt ‘’‘画图’’’
from sklearn.metrics import roc_curve
plt.rcParams[‘font.sans-serif’] = [‘SimHei’] ‘’‘黑体’’’
fpr, tpr, th = roc_curve(Y, model.predict_proba(X)[:, -1:])
plt.title(‘ROC曲线’)
plt.plot(fpr, tpr)
plt.show()

‘’‘展示曲线图’’’
在这里插入图片描述
再强调一下易混淆点:
精准率(查准率):预测值为1,且预测对了的比例,即:我们关注的那个事件,预测的有多准。
召回率(查全率):所有真实值为1的数据中,预测对了的个数,即:我们关注的那个事件真实的发生情况下,我们成功预测的比例是多少。

完美~

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值